This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the natural logarithm function, also the principal domain of the exponential function. This allows to write the longer class expression as simply ran log . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logrn | ⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-log | ⊢ log = ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 2 | 1 | rneqi | ⊢ ran log = ran ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 3 | eqid | ⊢ ( ◡ ℑ “ ( - π (,] π ) ) = ( ◡ ℑ “ ( - π (,] π ) ) | |
| 4 | 3 | eff1o | ⊢ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) –1-1-onto→ ( ℂ ∖ { 0 } ) |
| 5 | f1ocnv | ⊢ ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) –1-1-onto→ ( ℂ ∖ { 0 } ) → ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ( ◡ ℑ “ ( - π (,] π ) ) |
| 7 | f1ofo | ⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ( ◡ ℑ “ ( - π (,] π ) ) → ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –onto→ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 8 | forn | ⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –onto→ ( ◡ ℑ “ ( - π (,] π ) ) → ran ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ ran ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( ◡ ℑ “ ( - π (,] π ) ) |
| 10 | 2 9 | eqtri | ⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) |