This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efopn . (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efopnlem1 | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) < π ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) | |
| 2 | rpxr | ⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ* ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝑅 ∈ ℝ* ) |
| 4 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 5 | 4 | cnbl0 | ⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
| 6 | 3 5 | syl | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
| 7 | 1 6 | eleqtrrd | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝐴 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ) |
| 8 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 9 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 10 | elpreima | ⊢ ( abs Fn ℂ → ( 𝐴 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
| 11 | 8 9 10 | mp2b | ⊢ ( 𝐴 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ( 0 [,) 𝑅 ) ) ) |
| 12 | 11 | simplbi | ⊢ ( 𝐴 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) → 𝐴 ∈ ℂ ) |
| 13 | 7 12 | syl | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝐴 ∈ ℂ ) |
| 14 | 13 | imcld | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 16 | 15 | abscld | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 17 | rpre | ⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ ) | |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝑅 ∈ ℝ ) |
| 19 | pire | ⊢ π ∈ ℝ | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → π ∈ ℝ ) |
| 21 | 13 | abscld | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 22 | absimle | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) | |
| 23 | 13 22 | syl | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) |
| 24 | 11 | simprbi | ⊢ ( 𝐴 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) → ( abs ‘ 𝐴 ) ∈ ( 0 [,) 𝑅 ) ) |
| 25 | 7 24 | syl | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ 𝐴 ) ∈ ( 0 [,) 𝑅 ) ) |
| 26 | 0re | ⊢ 0 ∈ ℝ | |
| 27 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝐴 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ∧ ( abs ‘ 𝐴 ) < 𝑅 ) ) ) | |
| 28 | 26 3 27 | sylancr | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ( abs ‘ 𝐴 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ∧ ( abs ‘ 𝐴 ) < 𝑅 ) ) ) |
| 29 | 25 28 | mpbid | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ∧ ( abs ‘ 𝐴 ) < 𝑅 ) ) |
| 30 | 29 | simp3d | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ 𝐴 ) < 𝑅 ) |
| 31 | 16 21 18 23 30 | lelttrd | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) < 𝑅 ) |
| 32 | simplr | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝑅 < π ) | |
| 33 | 16 18 20 31 32 | lttrd | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) < π ) |