This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "continuous domain" of log is an open set. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | logdmopn | ⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | recld2 | ⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | iocmnfcld | ⊢ ( 0 ∈ ℝ → ( -∞ (,] 0 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( -∞ (,] 0 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 7 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 8 | 7 | fveq2i | ⊢ ( Clsd ‘ ( topGen ‘ ran (,) ) ) = ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 9 | 6 8 | eleqtri | ⊢ ( -∞ (,] 0 ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 10 | restcldr | ⊢ ( ( ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ( -∞ (,] 0 ) ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) → ( -∞ (,] 0 ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | |
| 11 | 3 9 10 | mp2an | ⊢ ( -∞ (,] 0 ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 12 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 13 | 12 | cldopn | ⊢ ( ( -∞ (,] 0 ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 14 | 11 13 | ax-mp | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ ( TopOpen ‘ ℂfld ) |
| 15 | 1 14 | eqeltri | ⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |