This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | renegcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 ∈ ℝ ) |
| 3 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 4 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 6 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 7 | leabs | ⊢ ( - 𝐴 ∈ ℝ → - 𝐴 ≤ ( abs ‘ - 𝐴 ) ) | |
| 8 | 2 7 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 ≤ ( abs ‘ - 𝐴 ) ) |
| 9 | absneg | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) | |
| 10 | 3 9 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 11 | 8 10 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) | |
| 13 | 2 5 6 11 12 | lelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → - 𝐴 < 𝐵 ) |
| 14 | leabs | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( abs ‘ 𝐴 ) ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 16 | 1 5 6 15 12 | lelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 < 𝐵 ) |
| 17 | 13 16 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 → ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ) ) |
| 19 | absor | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 21 | breq1 | ⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ 𝐴 < 𝐵 ) ) | |
| 22 | 21 | biimprd | ⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 < 𝐵 → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 23 | breq1 | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ - 𝐴 < 𝐵 ) ) | |
| 24 | 23 | biimprd | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( - 𝐴 < 𝐵 → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 25 | 22 24 | jaoa | ⊢ ( ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( 𝐴 < 𝐵 ∧ - 𝐴 < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 26 | 25 | ancomsd | ⊢ ( ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 27 | 20 26 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) ) |
| 28 | 18 27 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ) ) |
| 29 | ltnegcon1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 < 𝐵 ↔ - 𝐵 < 𝐴 ) ) | |
| 30 | 29 | anbi1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐴 < 𝐵 ∧ 𝐴 < 𝐵 ) ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
| 31 | 28 30 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |