This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is an extension sequence and A is an extension of the last element of F , then F + <" A "> is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgsp1 | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ dom 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐹 ∈ dom 𝑆 ↔ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 8 | 7 | simp1bi | ⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 9 | 8 | eldifad | ⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ Word 𝑊 ) |
| 10 | 1 2 3 4 5 6 | efgsf | ⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 11 | 10 | fdmi | ⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 12 | 11 | feq2i | ⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 13 | 10 12 | mpbir | ⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 14 | 13 | ffvelcdmi | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐹 ) ∈ 𝑊 ) |
| 15 | 1 2 3 4 | efgtf | ⊢ ( ( 𝑆 ‘ 𝐹 ) ∈ 𝑊 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐹 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 16 | 14 15 | syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐹 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 17 | 16 | simprd | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐹 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 18 | 17 | frnd | ⊢ ( 𝐹 ∈ dom 𝑆 → ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ⊆ 𝑊 ) |
| 19 | 18 | sselda | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 𝐴 ∈ 𝑊 ) |
| 20 | 19 | s1cld | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) |
| 21 | ccatcl | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ Word 𝑊 ) | |
| 22 | 9 20 21 | syl2an2r | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ Word 𝑊 ) |
| 23 | ccatws1n0 | ⊢ ( 𝐹 ∈ Word 𝑊 → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) | |
| 24 | 9 23 | syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) |
| 26 | eldifsn | ⊢ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ Word 𝑊 ∧ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ≠ ∅ ) ) | |
| 27 | 22 25 26 | sylanbrc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 28 | 9 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 𝐹 ∈ Word 𝑊 ) |
| 29 | eldifsni | ⊢ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝐹 ≠ ∅ ) | |
| 30 | 8 29 | syl | ⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ≠ ∅ ) |
| 31 | len0nnbi | ⊢ ( 𝐹 ∈ Word 𝑊 → ( 𝐹 ≠ ∅ ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) | |
| 32 | 9 31 | syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ≠ ∅ ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 33 | 30 32 | mpbid | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 34 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) | |
| 35 | 33 34 | sylibr | ⊢ ( 𝐹 ∈ dom 𝑆 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 37 | ccatval1 | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) | |
| 38 | 28 20 36 37 | syl3anc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 39 | 7 | simp2bi | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 40 | 39 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 41 | 38 40 | eqeltrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) ∈ 𝐷 ) |
| 42 | 7 | simp3bi | ⊢ ( 𝐹 ∈ dom 𝑆 → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 44 | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 45 | 44 | sseli | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 46 | ccatval1 | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 47 | 45 46 | syl3an3 | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 48 | elfzoel2 | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 49 | peano2zm | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) | |
| 50 | 48 49 | syl | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) |
| 51 | 48 | zred | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
| 52 | 51 | lem1d | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) |
| 53 | eluz2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 54 | 50 48 52 53 | syl3anbrc | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 55 | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 56 | 54 55 | syl | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 57 | elfzo1elm1fzo0 | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 58 | 56 57 | sseldd | ⊢ ( 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 59 | ccatval1 | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ ( 𝑖 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) = ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) | |
| 60 | 58 59 | syl3an3 | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) = ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) |
| 61 | 60 | fveq2d | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 62 | 61 | rneqd | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 63 | 47 62 | eleq12d | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 64 | 63 | 3expa | ⊢ ( ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) ∧ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 65 | 64 | ralbidva | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) → ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 66 | 9 20 65 | syl2an2r | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 67 | 43 66 | mpbird | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 68 | lencl | ⊢ ( 𝐹 ∈ Word 𝑊 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 69 | 9 68 | syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 70 | 69 | nn0cnd | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
| 71 | 70 | addlidd | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 0 + ( ♯ ‘ 𝐹 ) ) = ( ♯ ‘ 𝐹 ) ) |
| 72 | 71 | fveq2d | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 74 | s1len | ⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 ) = 1 | |
| 75 | 1nn | ⊢ 1 ∈ ℕ | |
| 76 | 74 75 | eqeltri | ⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ∈ ℕ |
| 77 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ↔ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ∈ ℕ ) | |
| 78 | 76 77 | mpbir | ⊢ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) |
| 79 | 78 | a1i | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) |
| 80 | ccatval3 | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( 〈“ 𝐴 ”〉 ‘ 0 ) ) | |
| 81 | 28 20 79 80 | syl3anc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐹 ) ) ) = ( 〈“ 𝐴 ”〉 ‘ 0 ) ) |
| 82 | 73 81 | eqtr3d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 〈“ 𝐴 ”〉 ‘ 0 ) ) |
| 83 | simpr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | |
| 84 | s1fv | ⊢ ( 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) → ( 〈“ 𝐴 ”〉 ‘ 0 ) = 𝐴 ) | |
| 85 | 84 | adantl | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 〈“ 𝐴 ”〉 ‘ 0 ) = 𝐴 ) |
| 86 | fzo0end | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 87 | 33 86 | syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 88 | 87 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 89 | ccatval1 | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 90 | 28 20 88 89 | syl3anc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 91 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐹 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝑆 ‘ 𝐹 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 93 | 90 92 | eqtr4d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝑆 ‘ 𝐹 ) ) |
| 94 | 93 | fveq2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 95 | 94 | rneqd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 96 | 83 85 95 | 3eltr4d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 〈“ 𝐴 ”〉 ‘ 0 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 97 | 82 96 | eqeltrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 98 | fvex | ⊢ ( ♯ ‘ 𝐹 ) ∈ V | |
| 99 | fveq2 | ⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ) | |
| 100 | fvoveq1 | ⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) = ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 101 | 100 | fveq2d | ⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 102 | 101 | rneqd | ⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) = ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 103 | 99 102 | eleq12d | ⊢ ( 𝑖 = ( ♯ ‘ 𝐹 ) → ( ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 104 | 98 103 | ralsn | ⊢ ( ∀ 𝑖 ∈ { ( ♯ ‘ 𝐹 ) } ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 105 | 97 104 | sylibr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ { ( ♯ ‘ 𝐹 ) } ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 106 | ralunb | ⊢ ( ∀ 𝑖 ∈ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ∧ ∀ 𝑖 ∈ { ( ♯ ‘ 𝐹 ) } ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) ) | |
| 107 | 67 105 106 | sylanbrc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 108 | ccatlen | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) | |
| 109 | 9 20 108 | syl2an2r | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ) |
| 110 | 74 | oveq2i | ⊢ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) |
| 111 | 109 110 | eqtrdi | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
| 112 | 111 | oveq2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) = ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 113 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 114 | 33 113 | eleqtrdi | ⊢ ( 𝐹 ∈ dom 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 115 | fzosplitsn | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) → ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) | |
| 116 | 114 115 | syl | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 117 | 116 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 1 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 118 | 112 117 | eqtrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 119 | 107 118 | raleqtrrdv | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 120 | 1 2 3 4 5 6 | efgsdm | ⊢ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ dom 𝑆 ↔ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ) ) ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 121 | 27 41 119 120 | syl3anbrc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐴 ”〉 ) ∈ dom 𝑆 ) |