This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitsn | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 2 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 3 | uzid | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 4 | peano2uz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 6 | elfzuzb | ⊢ ( 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 1 ) ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) ) | |
| 7 | 1 5 6 | sylanbrc | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 1 ) ) ) |
| 8 | fzosplit | ⊢ ( 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 1 ) ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 1 ) ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 1 ) ) ) ) |
| 10 | fzosn | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ..^ ( 𝐵 + 1 ) ) = { 𝐵 } ) | |
| 11 | 2 10 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 ..^ ( 𝐵 + 1 ) ) = { 𝐵 } ) |
| 12 | 11 | uneq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 1 ) ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |