This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 3-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgsres | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ dom 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐹 ∈ dom 𝑆 ↔ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 8 | 7 | simp1bi | ⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 10 | 9 | eldifad | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ Word 𝑊 ) |
| 11 | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 12 | simpr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 13 | 11 12 | sselid | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 14 | pfxres | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 16 | pfxcl | ⊢ ( 𝐹 ∈ Word 𝑊 → ( 𝐹 prefix 𝑁 ) ∈ Word 𝑊 ) | |
| 17 | 10 16 | syl | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) ∈ Word 𝑊 ) |
| 18 | 15 17 | eqeltrrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑊 ) |
| 19 | pfxlen | ⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) | |
| 20 | 10 13 19 | syl2anc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
| 21 | elfznn | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ℕ ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ℕ ) |
| 23 | 20 22 | eqeltrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) ∈ ℕ ) |
| 24 | wrdfin | ⊢ ( ( 𝐹 prefix 𝑁 ) ∈ Word 𝑊 → ( 𝐹 prefix 𝑁 ) ∈ Fin ) | |
| 25 | hashnncl | ⊢ ( ( 𝐹 prefix 𝑁 ) ∈ Fin → ( ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) ∈ ℕ ↔ ( 𝐹 prefix 𝑁 ) ≠ ∅ ) ) | |
| 26 | 17 24 25 | 3syl | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) ∈ ℕ ↔ ( 𝐹 prefix 𝑁 ) ≠ ∅ ) ) |
| 27 | 23 26 | mpbid | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) ≠ ∅ ) |
| 28 | 15 27 | eqnetrrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ≠ ∅ ) |
| 29 | eldifsn | ⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑊 ∧ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ≠ ∅ ) ) | |
| 30 | 18 28 29 | sylanbrc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 31 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) | |
| 32 | 22 31 | sylibr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 33 | 32 | fvresd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 34 | 7 | simp2bi | ⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 36 | 33 35 | eqeltrd | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 0 ) ∈ 𝐷 ) |
| 37 | elfzuz3 | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 39 | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 41 | 7 | simp3bi | ⊢ ( 𝐹 ∈ dom 𝑆 → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 43 | ssralv | ⊢ ( ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) | |
| 44 | 40 42 43 | sylc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 45 | fzo0ss1 | ⊢ ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) | |
| 46 | 45 | sseli | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
| 47 | 46 | fvresd | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 48 | elfzoel2 | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 49 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 50 | 48 49 | syl | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 51 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 52 | 48 51 | syl | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 53 | 48 | zcnd | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℂ ) |
| 54 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 55 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 56 | 53 54 55 | sylancl | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 57 | 56 | fveq2d | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 58 | 52 57 | eleqtrrd | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 59 | peano2uzr | ⊢ ( ( ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) | |
| 60 | 50 58 59 | syl2anc | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 61 | fzoss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) | |
| 62 | 60 61 | syl | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 63 | elfzo1elm1fzo0 | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) | |
| 64 | 62 63 | sseldd | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 65 | 64 | fvresd | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) = ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) |
| 66 | 65 | fveq2d | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) = ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 67 | 66 | rneqd | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 68 | 47 67 | eleq12d | ⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 69 | 68 | ralbiia | ⊢ ( ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 70 | 44 69 | sylibr | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 71 | 15 | fveq2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) |
| 72 | 71 20 | eqtr3d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = 𝑁 ) |
| 73 | 72 | oveq2d | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) = ( 1 ..^ 𝑁 ) ) |
| 74 | 70 73 | raleqtrrdv | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 75 | 1 2 3 4 5 6 | efgsdm | ⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ dom 𝑆 ↔ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 76 | 30 36 74 75 | syl3anbrc | ⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ dom 𝑆 ) |