This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The concatenation of a word with a singleton word is not the empty set. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 5-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatws1n0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 2 | nn0p1gt0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → 0 < ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 4 | ccatws1len | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) | |
| 5 | 3 4 | breqtrrd | ⊢ ( 𝑊 ∈ Word 𝑉 → 0 < ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) |
| 6 | ovex | ⊢ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ V | |
| 7 | hashneq0 | ⊢ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ V → ( 0 < ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ↔ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ≠ ∅ ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( 0 < ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ↔ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ≠ ∅ ) |
| 9 | 5 8 | sylib | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ≠ ∅ ) |