This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is an extension sequence and A is an extension of the last element of F , then F + <" A "> is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgsp1 | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) e. dom S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | 1 2 3 4 5 6 | efgsdm | |- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 8 | 7 | simp1bi | |- ( F e. dom S -> F e. ( Word W \ { (/) } ) ) |
| 9 | 8 | eldifad | |- ( F e. dom S -> F e. Word W ) |
| 10 | 1 2 3 4 5 6 | efgsf | |- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
| 11 | 10 | fdmi | |- dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |
| 12 | 11 | feq2i | |- ( S : dom S --> W <-> S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W ) |
| 13 | 10 12 | mpbir | |- S : dom S --> W |
| 14 | 13 | ffvelcdmi | |- ( F e. dom S -> ( S ` F ) e. W ) |
| 15 | 1 2 3 4 | efgtf | |- ( ( S ` F ) e. W -> ( ( T ` ( S ` F ) ) = ( a e. ( 0 ... ( # ` ( S ` F ) ) ) , i e. ( I X. 2o ) |-> ( ( S ` F ) splice <. a , a , <" i ( M ` i ) "> >. ) ) /\ ( T ` ( S ` F ) ) : ( ( 0 ... ( # ` ( S ` F ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 16 | 14 15 | syl | |- ( F e. dom S -> ( ( T ` ( S ` F ) ) = ( a e. ( 0 ... ( # ` ( S ` F ) ) ) , i e. ( I X. 2o ) |-> ( ( S ` F ) splice <. a , a , <" i ( M ` i ) "> >. ) ) /\ ( T ` ( S ` F ) ) : ( ( 0 ... ( # ` ( S ` F ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 17 | 16 | simprd | |- ( F e. dom S -> ( T ` ( S ` F ) ) : ( ( 0 ... ( # ` ( S ` F ) ) ) X. ( I X. 2o ) ) --> W ) |
| 18 | 17 | frnd | |- ( F e. dom S -> ran ( T ` ( S ` F ) ) C_ W ) |
| 19 | 18 | sselda | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A e. W ) |
| 20 | 19 | s1cld | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> <" A "> e. Word W ) |
| 21 | ccatcl | |- ( ( F e. Word W /\ <" A "> e. Word W ) -> ( F ++ <" A "> ) e. Word W ) |
|
| 22 | 9 20 21 | syl2an2r | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) e. Word W ) |
| 23 | ccatws1n0 | |- ( F e. Word W -> ( F ++ <" A "> ) =/= (/) ) |
|
| 24 | 9 23 | syl | |- ( F e. dom S -> ( F ++ <" A "> ) =/= (/) ) |
| 25 | 24 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) =/= (/) ) |
| 26 | eldifsn | |- ( ( F ++ <" A "> ) e. ( Word W \ { (/) } ) <-> ( ( F ++ <" A "> ) e. Word W /\ ( F ++ <" A "> ) =/= (/) ) ) |
|
| 27 | 22 25 26 | sylanbrc | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) e. ( Word W \ { (/) } ) ) |
| 28 | 9 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> F e. Word W ) |
| 29 | eldifsni | |- ( F e. ( Word W \ { (/) } ) -> F =/= (/) ) |
|
| 30 | 8 29 | syl | |- ( F e. dom S -> F =/= (/) ) |
| 31 | len0nnbi | |- ( F e. Word W -> ( F =/= (/) <-> ( # ` F ) e. NN ) ) |
|
| 32 | 9 31 | syl | |- ( F e. dom S -> ( F =/= (/) <-> ( # ` F ) e. NN ) ) |
| 33 | 30 32 | mpbid | |- ( F e. dom S -> ( # ` F ) e. NN ) |
| 34 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
|
| 35 | 33 34 | sylibr | |- ( F e. dom S -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 36 | 35 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 37 | ccatval1 | |- ( ( F e. Word W /\ <" A "> e. Word W /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` 0 ) = ( F ` 0 ) ) |
|
| 38 | 28 20 36 37 | syl3anc | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` 0 ) = ( F ` 0 ) ) |
| 39 | 7 | simp2bi | |- ( F e. dom S -> ( F ` 0 ) e. D ) |
| 40 | 39 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ` 0 ) e. D ) |
| 41 | 38 40 | eqeltrd | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` 0 ) e. D ) |
| 42 | 7 | simp3bi | |- ( F e. dom S -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 43 | 42 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 44 | fzo0ss1 | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
|
| 45 | 44 | sseli | |- ( i e. ( 1 ..^ ( # ` F ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
| 46 | ccatval1 | |- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` i ) = ( F ` i ) ) |
|
| 47 | 45 46 | syl3an3 | |- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` i ) = ( F ` i ) ) |
| 48 | elfzoel2 | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. ZZ ) |
|
| 49 | peano2zm | |- ( ( # ` F ) e. ZZ -> ( ( # ` F ) - 1 ) e. ZZ ) |
|
| 50 | 48 49 | syl | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. ZZ ) |
| 51 | 48 | zred | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. RR ) |
| 52 | 51 | lem1d | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) <_ ( # ` F ) ) |
| 53 | eluz2 | |- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) <-> ( ( ( # ` F ) - 1 ) e. ZZ /\ ( # ` F ) e. ZZ /\ ( ( # ` F ) - 1 ) <_ ( # ` F ) ) ) |
|
| 54 | 50 48 52 53 | syl3anbrc | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
| 55 | fzoss2 | |- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 56 | 54 55 | syl | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 57 | elfzo1elm1fzo0 | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( i - 1 ) e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) |
|
| 58 | 56 57 | sseldd | |- ( i e. ( 1 ..^ ( # ` F ) ) -> ( i - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 59 | ccatval1 | |- ( ( F e. Word W /\ <" A "> e. Word W /\ ( i - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( i - 1 ) ) = ( F ` ( i - 1 ) ) ) |
|
| 60 | 58 59 | syl3an3 | |- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( i - 1 ) ) = ( F ` ( i - 1 ) ) ) |
| 61 | 60 | fveq2d | |- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ( T ` ( F ` ( i - 1 ) ) ) ) |
| 62 | 61 | rneqd | |- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 63 | 47 62 | eleq12d | |- ( ( F e. Word W /\ <" A "> e. Word W /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 64 | 63 | 3expa | |- ( ( ( F e. Word W /\ <" A "> e. Word W ) /\ i e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 65 | 64 | ralbidva | |- ( ( F e. Word W /\ <" A "> e. Word W ) -> ( A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 66 | 9 20 65 | syl2an2r | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 67 | 43 66 | mpbird | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 68 | lencl | |- ( F e. Word W -> ( # ` F ) e. NN0 ) |
|
| 69 | 9 68 | syl | |- ( F e. dom S -> ( # ` F ) e. NN0 ) |
| 70 | 69 | nn0cnd | |- ( F e. dom S -> ( # ` F ) e. CC ) |
| 71 | 70 | addlidd | |- ( F e. dom S -> ( 0 + ( # ` F ) ) = ( # ` F ) ) |
| 72 | 71 | fveq2d | |- ( F e. dom S -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( ( F ++ <" A "> ) ` ( # ` F ) ) ) |
| 73 | 72 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( ( F ++ <" A "> ) ` ( # ` F ) ) ) |
| 74 | s1len | |- ( # ` <" A "> ) = 1 |
|
| 75 | 1nn | |- 1 e. NN |
|
| 76 | 74 75 | eqeltri | |- ( # ` <" A "> ) e. NN |
| 77 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` <" A "> ) ) <-> ( # ` <" A "> ) e. NN ) |
|
| 78 | 76 77 | mpbir | |- 0 e. ( 0 ..^ ( # ` <" A "> ) ) |
| 79 | 78 | a1i | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> 0 e. ( 0 ..^ ( # ` <" A "> ) ) ) |
| 80 | ccatval3 | |- ( ( F e. Word W /\ <" A "> e. Word W /\ 0 e. ( 0 ..^ ( # ` <" A "> ) ) ) -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( <" A "> ` 0 ) ) |
|
| 81 | 28 20 79 80 | syl3anc | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( 0 + ( # ` F ) ) ) = ( <" A "> ` 0 ) ) |
| 82 | 73 81 | eqtr3d | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( # ` F ) ) = ( <" A "> ` 0 ) ) |
| 83 | simpr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A e. ran ( T ` ( S ` F ) ) ) |
|
| 84 | s1fv | |- ( A e. ran ( T ` ( S ` F ) ) -> ( <" A "> ` 0 ) = A ) |
|
| 85 | 84 | adantl | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( <" A "> ` 0 ) = A ) |
| 86 | fzo0end | |- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 87 | 33 86 | syl | |- ( F e. dom S -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 88 | 87 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 89 | ccatval1 | |- ( ( F e. Word W /\ <" A "> e. Word W /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
|
| 90 | 28 20 88 89 | syl3anc | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 91 | 1 2 3 4 5 6 | efgsval | |- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 92 | 91 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 93 | 90 92 | eqtr4d | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) = ( S ` F ) ) |
| 94 | 93 | fveq2d | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) = ( T ` ( S ` F ) ) ) |
| 95 | 94 | rneqd | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) = ran ( T ` ( S ` F ) ) ) |
| 96 | 83 85 95 | 3eltr4d | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( <" A "> ` 0 ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 97 | 82 96 | eqeltrd | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( ( F ++ <" A "> ) ` ( # ` F ) ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 98 | fvex | |- ( # ` F ) e. _V |
|
| 99 | fveq2 | |- ( i = ( # ` F ) -> ( ( F ++ <" A "> ) ` i ) = ( ( F ++ <" A "> ) ` ( # ` F ) ) ) |
|
| 100 | fvoveq1 | |- ( i = ( # ` F ) -> ( ( F ++ <" A "> ) ` ( i - 1 ) ) = ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) |
|
| 101 | 100 | fveq2d | |- ( i = ( # ` F ) -> ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 102 | 101 | rneqd | |- ( i = ( # ` F ) -> ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) = ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 103 | 99 102 | eleq12d | |- ( i = ( # ` F ) -> ( ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( ( F ++ <" A "> ) ` ( # ` F ) ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 104 | 98 103 | ralsn | |- ( A. i e. { ( # ` F ) } ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( ( F ++ <" A "> ) ` ( # ` F ) ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( ( # ` F ) - 1 ) ) ) ) |
| 105 | 97 104 | sylibr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. { ( # ` F ) } ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 106 | ralunb | |- ( A. i e. ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) <-> ( A. i e. ( 1 ..^ ( # ` F ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) /\ A. i e. { ( # ` F ) } ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) ) |
|
| 107 | 67 105 106 | sylanbrc | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 108 | ccatlen | |- ( ( F e. Word W /\ <" A "> e. Word W ) -> ( # ` ( F ++ <" A "> ) ) = ( ( # ` F ) + ( # ` <" A "> ) ) ) |
|
| 109 | 9 20 108 | syl2an2r | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( # ` ( F ++ <" A "> ) ) = ( ( # ` F ) + ( # ` <" A "> ) ) ) |
| 110 | 74 | oveq2i | |- ( ( # ` F ) + ( # ` <" A "> ) ) = ( ( # ` F ) + 1 ) |
| 111 | 109 110 | eqtrdi | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( # ` ( F ++ <" A "> ) ) = ( ( # ` F ) + 1 ) ) |
| 112 | 111 | oveq2d | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) = ( 1 ..^ ( ( # ` F ) + 1 ) ) ) |
| 113 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 114 | 33 113 | eleqtrdi | |- ( F e. dom S -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
| 115 | fzosplitsn | |- ( ( # ` F ) e. ( ZZ>= ` 1 ) -> ( 1 ..^ ( ( # ` F ) + 1 ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
|
| 116 | 114 115 | syl | |- ( F e. dom S -> ( 1 ..^ ( ( # ` F ) + 1 ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 117 | 116 | adantr | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( 1 ..^ ( ( # ` F ) + 1 ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 118 | 112 117 | eqtrd | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 119 | 107 118 | raleqtrrdv | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> A. i e. ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) |
| 120 | 1 2 3 4 5 6 | efgsdm | |- ( ( F ++ <" A "> ) e. dom S <-> ( ( F ++ <" A "> ) e. ( Word W \ { (/) } ) /\ ( ( F ++ <" A "> ) ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` ( F ++ <" A "> ) ) ) ( ( F ++ <" A "> ) ` i ) e. ran ( T ` ( ( F ++ <" A "> ) ` ( i - 1 ) ) ) ) ) |
| 121 | 27 41 119 120 | syl3anbrc | |- ( ( F e. dom S /\ A e. ran ( T ` ( S ` F ) ) ) -> ( F ++ <" A "> ) e. dom S ) |