This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The radius of convergence of the (formal) derivative H of the power series G is at least as large as the radius of convergence of G . (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvradcnv.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| dvradcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| dvradcnv.h | |- H = ( n e. NN0 |-> ( ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) x. ( X ^ n ) ) ) |
||
| dvradcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| dvradcnv.x | |- ( ph -> X e. CC ) |
||
| dvradcnv.l | |- ( ph -> ( abs ` X ) < R ) |
||
| Assertion | dvradcnv | |- ( ph -> seq 0 ( + , H ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvradcnv.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | dvradcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 3 | dvradcnv.h | |- H = ( n e. NN0 |-> ( ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) x. ( X ^ n ) ) ) |
|
| 4 | dvradcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 5 | dvradcnv.x | |- ( ph -> X e. CC ) |
|
| 6 | dvradcnv.l | |- ( ph -> ( abs ` X ) < R ) |
|
| 7 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 8 | 1nn0 | |- 1 e. NN0 |
|
| 9 | 8 | a1i | |- ( ph -> 1 e. NN0 ) |
| 10 | ax-1cn | |- 1 e. CC |
|
| 11 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ k e. NN0 ) -> k e. CC ) |
| 13 | nn0ex | |- NN0 e. _V |
|
| 14 | 13 | mptex | |- ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) e. _V |
| 15 | 14 | shftval4 | |- ( ( 1 e. CC /\ k e. CC ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) |
| 16 | 10 12 15 | sylancr | |- ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) |
| 17 | addcom | |- ( ( 1 e. CC /\ k e. CC ) -> ( 1 + k ) = ( k + 1 ) ) |
|
| 18 | 10 12 17 | sylancr | |- ( ( ph /\ k e. NN0 ) -> ( 1 + k ) = ( k + 1 ) ) |
| 19 | 18 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) ) |
| 20 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 21 | 20 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) |
| 22 | id | |- ( i = ( k + 1 ) -> i = ( k + 1 ) ) |
|
| 23 | 2fveq3 | |- ( i = ( k + 1 ) -> ( abs ` ( ( G ` X ) ` i ) ) = ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) |
|
| 24 | 22 23 | oveq12d | |- ( i = ( k + 1 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) |
| 25 | eqid | |- ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) = ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) |
|
| 26 | ovex | |- ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) e. _V |
|
| 27 | 24 25 26 | fvmpt | |- ( ( k + 1 ) e. NN0 -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) |
| 28 | 21 27 | syl | |- ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) |
| 29 | 1 | pserval2 | |- ( ( X e. CC /\ ( k + 1 ) e. NN0 ) -> ( ( G ` X ) ` ( k + 1 ) ) = ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) |
| 30 | 5 20 29 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` ( k + 1 ) ) = ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) |
| 31 | 30 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) |
| 32 | 31 | oveq2d | |- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 33 | 28 32 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 34 | 16 19 33 | 3eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 35 | 21 | nn0red | |- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. RR ) |
| 36 | ffvelcdm | |- ( ( A : NN0 --> CC /\ ( k + 1 ) e. NN0 ) -> ( A ` ( k + 1 ) ) e. CC ) |
|
| 37 | 4 20 36 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( A ` ( k + 1 ) ) e. CC ) |
| 38 | expcl | |- ( ( X e. CC /\ ( k + 1 ) e. NN0 ) -> ( X ^ ( k + 1 ) ) e. CC ) |
|
| 39 | 5 20 38 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( X ^ ( k + 1 ) ) e. CC ) |
| 40 | 37 39 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) e. CC ) |
| 41 | 40 | abscld | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. RR ) |
| 42 | 35 41 | remulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) e. RR ) |
| 43 | 34 42 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) e. RR ) |
| 44 | oveq1 | |- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
|
| 45 | 44 | fveq2d | |- ( n = k -> ( A ` ( n + 1 ) ) = ( A ` ( k + 1 ) ) ) |
| 46 | 44 45 | oveq12d | |- ( n = k -> ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) = ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) ) |
| 47 | oveq2 | |- ( n = k -> ( X ^ n ) = ( X ^ k ) ) |
|
| 48 | 46 47 | oveq12d | |- ( n = k -> ( ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) x. ( X ^ n ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) |
| 49 | ovex | |- ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) e. _V |
|
| 50 | 48 3 49 | fvmpt | |- ( k e. NN0 -> ( H ` k ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) |
| 51 | 50 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) |
| 52 | 21 | nn0cnd | |- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. CC ) |
| 53 | 52 37 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) e. CC ) |
| 54 | expcl | |- ( ( X e. CC /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
|
| 55 | 5 54 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
| 56 | 53 55 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) e. CC ) |
| 57 | 51 56 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) e. CC ) |
| 58 | id | |- ( i = k -> i = k ) |
|
| 59 | 2fveq3 | |- ( i = k -> ( abs ` ( ( G ` X ) ` i ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
|
| 60 | 58 59 | oveq12d | |- ( i = k -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 61 | 60 | cbvmptv | |- ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) = ( k e. NN0 |-> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 62 | 1 4 2 5 6 61 | radcnvlt1 | |- ( ph -> ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |
| 63 | 62 | simpld | |- ( ph -> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> ) |
| 64 | climdm | |- ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
|
| 65 | 63 64 | sylib | |- ( ph -> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
| 66 | 0z | |- 0 e. ZZ |
|
| 67 | neg1z | |- -u 1 e. ZZ |
|
| 68 | 14 | isershft | |- ( ( 0 e. ZZ /\ -u 1 e. ZZ ) -> ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) <-> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) ) |
| 69 | 66 67 68 | mp2an | |- ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) <-> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
| 70 | 65 69 | sylib | |- ( ph -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
| 71 | seqex | |- seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. _V |
|
| 72 | fvex | |- ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) e. _V |
|
| 73 | 71 72 | breldm | |- ( seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) |
| 74 | 70 73 | syl | |- ( ph -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) |
| 75 | eqid | |- ( ZZ>= ` ( 0 + -u 1 ) ) = ( ZZ>= ` ( 0 + -u 1 ) ) |
|
| 76 | neg1cn | |- -u 1 e. CC |
|
| 77 | 76 | addlidi | |- ( 0 + -u 1 ) = -u 1 |
| 78 | 0le1 | |- 0 <_ 1 |
|
| 79 | 1re | |- 1 e. RR |
|
| 80 | le0neg2 | |- ( 1 e. RR -> ( 0 <_ 1 <-> -u 1 <_ 0 ) ) |
|
| 81 | 79 80 | ax-mp | |- ( 0 <_ 1 <-> -u 1 <_ 0 ) |
| 82 | 78 81 | mpbi | |- -u 1 <_ 0 |
| 83 | 77 82 | eqbrtri | |- ( 0 + -u 1 ) <_ 0 |
| 84 | 77 67 | eqeltri | |- ( 0 + -u 1 ) e. ZZ |
| 85 | 84 | eluz1i | |- ( 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) <-> ( 0 e. ZZ /\ ( 0 + -u 1 ) <_ 0 ) ) |
| 86 | 66 83 85 | mpbir2an | |- 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) |
| 87 | 86 | a1i | |- ( ph -> 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) ) |
| 88 | eluzelcn | |- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> k e. CC ) |
|
| 89 | 88 | adantl | |- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> k e. CC ) |
| 90 | 10 89 15 | sylancr | |- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) |
| 91 | nn0re | |- ( i e. NN0 -> i e. RR ) |
|
| 92 | 91 | adantl | |- ( ( ph /\ i e. NN0 ) -> i e. RR ) |
| 93 | 1 4 5 | psergf | |- ( ph -> ( G ` X ) : NN0 --> CC ) |
| 94 | 93 | ffvelcdmda | |- ( ( ph /\ i e. NN0 ) -> ( ( G ` X ) ` i ) e. CC ) |
| 95 | 94 | abscld | |- ( ( ph /\ i e. NN0 ) -> ( abs ` ( ( G ` X ) ` i ) ) e. RR ) |
| 96 | 92 95 | remulcld | |- ( ( ph /\ i e. NN0 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) e. RR ) |
| 97 | 96 | recnd | |- ( ( ph /\ i e. NN0 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) e. CC ) |
| 98 | 97 | fmpttd | |- ( ph -> ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) : NN0 --> CC ) |
| 99 | 10 88 17 | sylancr | |- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( 1 + k ) = ( k + 1 ) ) |
| 100 | eluzp1p1 | |- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( k + 1 ) e. ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) ) |
|
| 101 | 77 | oveq1i | |- ( ( 0 + -u 1 ) + 1 ) = ( -u 1 + 1 ) |
| 102 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 103 | 10 76 102 | addcomli | |- ( -u 1 + 1 ) = 0 |
| 104 | 101 103 | eqtri | |- ( ( 0 + -u 1 ) + 1 ) = 0 |
| 105 | 104 | fveq2i | |- ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) = ( ZZ>= ` 0 ) |
| 106 | 7 105 | eqtr4i | |- NN0 = ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) |
| 107 | 100 106 | eleqtrrdi | |- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( k + 1 ) e. NN0 ) |
| 108 | 99 107 | eqeltrd | |- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( 1 + k ) e. NN0 ) |
| 109 | ffvelcdm | |- ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) : NN0 --> CC /\ ( 1 + k ) e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) e. CC ) |
|
| 110 | 98 108 109 | syl2an | |- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) e. CC ) |
| 111 | 90 110 | eqeltrd | |- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) e. CC ) |
| 112 | 75 87 111 | iserex | |- ( ph -> ( seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> <-> seq 0 ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) ) |
| 113 | 74 112 | mpbid | |- ( ph -> seq 0 ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) |
| 114 | 1red | |- ( ( ph /\ X = 0 ) -> 1 e. RR ) |
|
| 115 | neqne | |- ( -. X = 0 -> X =/= 0 ) |
|
| 116 | absrpcl | |- ( ( X e. CC /\ X =/= 0 ) -> ( abs ` X ) e. RR+ ) |
|
| 117 | 5 115 116 | syl2an | |- ( ( ph /\ -. X = 0 ) -> ( abs ` X ) e. RR+ ) |
| 118 | 117 | rprecred | |- ( ( ph /\ -. X = 0 ) -> ( 1 / ( abs ` X ) ) e. RR ) |
| 119 | 114 118 | ifclda | |- ( ph -> if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) e. RR ) |
| 120 | oveq1 | |- ( 1 = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
|
| 121 | 120 | breq2d | |- ( 1 = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) <-> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) ) |
| 122 | oveq1 | |- ( ( 1 / ( abs ` X ) ) = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
|
| 123 | 122 | breq2d | |- ( ( 1 / ( abs ` X ) ) = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) <-> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) ) |
| 124 | elnnuz | |- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
|
| 125 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 126 | 124 125 | sylbir | |- ( k e. ( ZZ>= ` 1 ) -> k e. NN0 ) |
| 127 | 21 | nn0ge0d | |- ( ( ph /\ k e. NN0 ) -> 0 <_ ( k + 1 ) ) |
| 128 | 40 | absge0d | |- ( ( ph /\ k e. NN0 ) -> 0 <_ ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) |
| 129 | 35 41 127 128 | mulge0d | |- ( ( ph /\ k e. NN0 ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 130 | 126 129 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 131 | 130 | adantr | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 132 | oveq1 | |- ( X = 0 -> ( X ^ k ) = ( 0 ^ k ) ) |
|
| 133 | simpr | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. ( ZZ>= ` 1 ) ) |
|
| 134 | 133 124 | sylibr | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. NN ) |
| 135 | 134 | 0expd | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 0 ^ k ) = 0 ) |
| 136 | 132 135 | sylan9eqr | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( X ^ k ) = 0 ) |
| 137 | 136 | oveq2d | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) ) |
| 138 | 53 | mul01d | |- ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) |
| 139 | 126 138 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) |
| 140 | 139 | adantr | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) |
| 141 | 137 140 | eqtrd | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = 0 ) |
| 142 | 141 | abs00bd | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = 0 ) |
| 143 | 42 | recnd | |- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) e. CC ) |
| 144 | 143 | mullidd | |- ( ( ph /\ k e. NN0 ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 145 | 126 144 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 146 | 145 | adantr | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 147 | 131 142 146 | 3brtr4d | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 148 | df-ne | |- ( X =/= 0 <-> -. X = 0 ) |
|
| 149 | 56 | abscld | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) e. RR ) |
| 150 | 52 37 55 | mulassd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) |
| 151 | 150 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = ( abs ` ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 152 | 37 55 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) e. CC ) |
| 153 | 52 152 | absmuld | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) = ( ( abs ` ( k + 1 ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 154 | 35 127 | absidd | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( k + 1 ) ) = ( k + 1 ) ) |
| 155 | 154 | oveq1d | |- ( ( ph /\ k e. NN0 ) -> ( ( abs ` ( k + 1 ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 156 | 151 153 155 | 3eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 157 | 149 156 | eqled | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 158 | 157 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 159 | 5 | adantr | |- ( ( ph /\ k e. NN0 ) -> X e. CC ) |
| 160 | 116 | rpreccld | |- ( ( X e. CC /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. RR+ ) |
| 161 | 159 160 | sylan | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. RR+ ) |
| 162 | 161 | rpcnd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. CC ) |
| 163 | 52 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( k + 1 ) e. CC ) |
| 164 | 41 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. RR ) |
| 165 | 164 | recnd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. CC ) |
| 166 | 162 163 165 | mul12d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 167 | 40 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) e. CC ) |
| 168 | 5 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> X e. CC ) |
| 169 | simpr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> X =/= 0 ) |
|
| 170 | 167 168 169 | absdivd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) ) = ( ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) / ( abs ` X ) ) ) |
| 171 | 37 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( A ` ( k + 1 ) ) e. CC ) |
| 172 | 39 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( k + 1 ) ) e. CC ) |
| 173 | 171 172 168 169 | divassd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) = ( ( A ` ( k + 1 ) ) x. ( ( X ^ ( k + 1 ) ) / X ) ) ) |
| 174 | 12 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> k e. CC ) |
| 175 | pncan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
|
| 176 | 174 10 175 | sylancl | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( k + 1 ) - 1 ) = k ) |
| 177 | 176 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( ( k + 1 ) - 1 ) ) = ( X ^ k ) ) |
| 178 | 21 | nn0zd | |- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. ZZ ) |
| 179 | 178 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( k + 1 ) e. ZZ ) |
| 180 | 168 169 179 | expm1d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( ( k + 1 ) - 1 ) ) = ( ( X ^ ( k + 1 ) ) / X ) ) |
| 181 | 177 180 | eqtr3d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ k ) = ( ( X ^ ( k + 1 ) ) / X ) ) |
| 182 | 181 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) = ( ( A ` ( k + 1 ) ) x. ( ( X ^ ( k + 1 ) ) / X ) ) ) |
| 183 | 173 182 | eqtr4d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) = ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) |
| 184 | 183 | fveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) |
| 185 | 5 | abscld | |- ( ph -> ( abs ` X ) e. RR ) |
| 186 | 185 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. RR ) |
| 187 | 186 | recnd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. CC ) |
| 188 | 159 116 | sylan | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. RR+ ) |
| 189 | 188 | rpne0d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) =/= 0 ) |
| 190 | 165 187 189 | divrec2d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) / ( abs ` X ) ) = ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
| 191 | 170 184 190 | 3eqtr3rd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) |
| 192 | 191 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( k + 1 ) x. ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 193 | 166 192 | eqtrd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
| 194 | 158 193 | breqtrrd | |- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 195 | 126 194 | sylanl2 | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 196 | 148 195 | sylan2br | |- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ -. X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 197 | 121 123 147 196 | ifbothda | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 198 | 51 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( H ` k ) ) = ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) ) |
| 199 | 126 198 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( H ` k ) ) = ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) ) |
| 200 | 34 | oveq2d | |- ( ( ph /\ k e. NN0 ) -> ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 201 | 126 200 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
| 202 | 197 199 201 | 3brtr4d | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( H ` k ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) ) |
| 203 | 7 9 43 57 113 119 202 | cvgcmpce | |- ( ph -> seq 0 ( + , H ) e. dom ~~> ) |