This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isershft.1 | ⊢ 𝐹 ∈ V | |
| Assertion | isershft | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ↔ seq ( 𝑀 + 𝑁 ) ( + , ( 𝐹 shift 𝑁 ) ) ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isershft.1 | ⊢ 𝐹 ∈ V | |
| 2 | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) | |
| 3 | 1 | seqshft | ⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq ( 𝑀 + 𝑁 ) ( + , ( 𝐹 shift 𝑁 ) ) = ( seq ( ( 𝑀 + 𝑁 ) − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) ) |
| 4 | 2 3 | sylancom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq ( 𝑀 + 𝑁 ) ( + , ( 𝐹 shift 𝑁 ) ) = ( seq ( ( 𝑀 + 𝑁 ) − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) ) |
| 5 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 9 | 8 | seqeq1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq ( ( 𝑀 + 𝑁 ) − 𝑁 ) ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( seq ( ( 𝑀 + 𝑁 ) − 𝑁 ) ( + , 𝐹 ) shift 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) shift 𝑁 ) ) |
| 11 | 4 10 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq ( 𝑀 + 𝑁 ) ( + , ( 𝐹 shift 𝑁 ) ) = ( seq 𝑀 ( + , 𝐹 ) shift 𝑁 ) ) |
| 12 | 11 | breq1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( seq ( 𝑀 + 𝑁 ) ( + , ( 𝐹 shift 𝑁 ) ) ⇝ 𝐴 ↔ ( seq 𝑀 ( + , 𝐹 ) shift 𝑁 ) ⇝ 𝐴 ) ) |
| 13 | seqex | ⊢ seq 𝑀 ( + , 𝐹 ) ∈ V | |
| 14 | climshft | ⊢ ( ( 𝑁 ∈ ℤ ∧ seq 𝑀 ( + , 𝐹 ) ∈ V ) → ( ( seq 𝑀 ( + , 𝐹 ) shift 𝑁 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) ) | |
| 15 | 13 14 | mpan2 | ⊢ ( 𝑁 ∈ ℤ → ( ( seq 𝑀 ( + , 𝐹 ) shift 𝑁 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( seq 𝑀 ( + , 𝐹 ) shift 𝑁 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) ) |
| 17 | 12 16 | bitr2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ↔ seq ( 𝑀 + 𝑁 ) ( + , ( 𝐹 shift 𝑁 ) ) ⇝ 𝐴 ) ) |