This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of dvcobr as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvco.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| dvco.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | ||
| dvco.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) | ||
| dvco.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) | ||
| dvcobr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | ||
| dvcobr.t | ⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) | ||
| dvco.bf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ) | ||
| dvco.bg | ⊢ ( 𝜑 → 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) | ||
| dvco.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | dvcobrOLD | ⊢ ( 𝜑 → 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( 𝐾 · 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvco.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 2 | dvco.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | |
| 3 | dvco.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) | |
| 4 | dvco.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) | |
| 5 | dvcobr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 6 | dvcobr.t | ⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) | |
| 7 | dvco.bf | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ) | |
| 8 | dvco.bg | ⊢ ( 𝜑 → 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) | |
| 9 | dvco.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 10 | eqid | ⊢ ( 𝐽 ↾t 𝑇 ) = ( 𝐽 ↾t 𝑇 ) | |
| 11 | eqid | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 12 | 2 5 | sstrd | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 13 | 3 12 | fssd | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) |
| 14 | 10 9 11 6 13 4 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 15 | 8 14 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ) |
| 17 | 5 1 2 | dvcl | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ) → 𝐾 ∈ ℂ ) |
| 18 | 7 17 | mpdan | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐾 ∈ ℂ ) |
| 20 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 21 | eldifi | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) → 𝑧 ∈ 𝑌 ) | |
| 22 | ffvelcdm | ⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ) | |
| 23 | 3 21 22 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ) |
| 24 | 20 23 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
| 26 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
| 27 | 6 13 4 | dvbss | ⊢ ( 𝜑 → dom ( 𝑇 D 𝐺 ) ⊆ 𝑌 ) |
| 28 | reldv | ⊢ Rel ( 𝑇 D 𝐺 ) | |
| 29 | releldm | ⊢ ( ( Rel ( 𝑇 D 𝐺 ) ∧ 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) | |
| 30 | 28 8 29 | sylancr | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) |
| 31 | 27 30 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝑌 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐶 ∈ 𝑌 ) |
| 33 | 26 32 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝑋 ) |
| 34 | 20 33 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 36 | 25 35 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 37 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐺 : 𝑌 ⟶ ℂ ) |
| 38 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝑧 ∈ 𝑌 ) |
| 39 | 37 38 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 40 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐶 ∈ 𝑌 ) |
| 41 | 37 40 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 42 | 39 41 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 43 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) | |
| 44 | 39 41 | subeq0ad | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
| 45 | 44 | necon3abid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ≠ 0 ↔ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
| 46 | 43 45 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ≠ 0 ) |
| 47 | 36 42 46 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 48 | 19 47 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
| 49 | 4 6 | sstrd | ⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
| 50 | 13 49 31 | dvlem | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
| 51 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 52 | 9 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 53 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝐽 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) | |
| 54 | 52 52 53 | mp2an | ⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
| 55 | 54 | toponrestid | ⊢ ( 𝐽 ×t 𝐽 ) = ( ( 𝐽 ×t 𝐽 ) ↾t ( ℂ × ℂ ) ) |
| 56 | 23 | anim1i | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) |
| 57 | eldifsn | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) | |
| 58 | 56 57 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) |
| 59 | 58 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) |
| 60 | eldifsni | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) → 𝑦 ≠ ( 𝐺 ‘ 𝐶 ) ) | |
| 61 | ifnefalse | ⊢ ( 𝑦 ≠ ( 𝐺 ‘ 𝐶 ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) | |
| 62 | 60 61 | syl | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 63 | 62 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 64 | 3 31 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ 𝑋 ) |
| 65 | 1 12 64 | dvlem | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 66 | 63 65 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
| 67 | limcresi | ⊢ ( 𝐺 limℂ 𝐶 ) ⊆ ( ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) limℂ 𝐶 ) | |
| 68 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 69 | 68 | reseq1d | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) ) |
| 70 | difss | ⊢ ( 𝑌 ∖ { 𝐶 } ) ⊆ 𝑌 | |
| 71 | resmpt | ⊢ ( ( 𝑌 ∖ { 𝐶 } ) ⊆ 𝑌 → ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) | |
| 72 | 70 71 | ax-mp | ⊢ ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) |
| 73 | 69 72 | eqtrdi | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 74 | 73 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
| 75 | 67 74 | sseqtrid | ⊢ ( 𝜑 → ( 𝐺 limℂ 𝐶 ) ⊆ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
| 76 | eqid | ⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) | |
| 77 | 76 9 | dvcnp2 | ⊢ ( ( ( 𝑇 ⊆ ℂ ∧ 𝐺 : 𝑌 ⟶ ℂ ∧ 𝑌 ⊆ 𝑇 ) ∧ 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) → 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ) |
| 78 | 6 13 4 30 77 | syl31anc | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ) |
| 79 | 9 76 | cnplimc | ⊢ ( ( 𝑌 ⊆ ℂ ∧ 𝐶 ∈ 𝑌 ) → ( 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ↔ ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) ) |
| 80 | 49 31 79 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ↔ ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) ) |
| 81 | 78 80 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) |
| 82 | 81 | simprd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) |
| 83 | 75 82 | sseldd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
| 84 | eqid | ⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) | |
| 85 | eqid | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) | |
| 86 | 84 9 85 5 1 2 | eldv | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ↔ ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 87 | 7 86 | mpbid | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 88 | 87 | simprd | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) |
| 89 | 62 | mpteq2ia | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 90 | 89 | oveq1i | ⊢ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) |
| 91 | 88 90 | eleqtrrdi | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) |
| 92 | eqeq1 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 = ( 𝐺 ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) | |
| 93 | fveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | |
| 94 | 93 | oveq1d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 95 | oveq1 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) | |
| 96 | 94 95 | oveq12d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 97 | 92 96 | ifbieq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 98 | iftrue | ⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) = 𝐾 ) | |
| 99 | 98 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) = 𝐾 ) |
| 100 | 59 66 83 91 97 99 | limcco | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ 𝐶 ) ) |
| 101 | 15 | simprd | ⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 102 | 9 | mulcn | ⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 103 | 6 13 4 | dvcl | ⊢ ( ( 𝜑 ∧ 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) → 𝐿 ∈ ℂ ) |
| 104 | 8 103 | mpdan | ⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 105 | 18 104 | opelxpd | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) |
| 106 | 54 | toponunii | ⊢ ( ℂ × ℂ ) = ∪ ( 𝐽 ×t 𝐽 ) |
| 107 | 106 | cncnpi | ⊢ ( ( · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) → · ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
| 108 | 102 105 107 | sylancr | ⊢ ( 𝜑 → · ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
| 109 | 48 50 51 51 9 55 100 101 108 | limccnp2 | ⊢ ( 𝜑 → ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
| 110 | oveq1 | ⊢ ( 𝐾 = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) | |
| 111 | 110 | eqeq1d | ⊢ ( 𝐾 = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ↔ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
| 112 | oveq1 | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) | |
| 113 | 112 | eqeq1d | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ↔ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
| 114 | 19 | mul01d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · 0 ) = 0 ) |
| 115 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑋 ⊆ ℂ ) |
| 116 | 115 23 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 117 | 115 33 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 118 | 116 117 | subeq0ad | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
| 119 | 118 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ) |
| 120 | 119 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( 0 / ( 𝑧 − 𝐶 ) ) ) |
| 121 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑌 ⊆ ℂ ) |
| 122 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ∈ 𝑌 ) |
| 123 | 121 122 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ∈ ℂ ) |
| 124 | 121 32 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
| 125 | 123 124 | subcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ∈ ℂ ) |
| 126 | eldifsni | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) → 𝑧 ≠ 𝐶 ) | |
| 127 | 126 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ≠ 𝐶 ) |
| 128 | 123 124 127 | subne0d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ≠ 0 ) |
| 129 | 125 128 | div0d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 0 / ( 𝑧 − 𝐶 ) ) = 0 ) |
| 130 | 129 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 0 / ( 𝑧 − 𝐶 ) ) = 0 ) |
| 131 | 120 130 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = 0 ) |
| 132 | 131 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝐾 · 0 ) ) |
| 133 | fveq2 | ⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) | |
| 134 | 24 34 | subeq0ad | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 135 | 133 134 | imbitrrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ) ) |
| 136 | 135 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ) |
| 137 | 136 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) = ( 0 / ( 𝑧 − 𝐶 ) ) ) |
| 138 | 137 130 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) = 0 ) |
| 139 | 114 132 138 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
| 140 | 125 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝑧 − 𝐶 ) ∈ ℂ ) |
| 141 | 128 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝑧 − 𝐶 ) ≠ 0 ) |
| 142 | 36 42 140 46 141 | dmdcan2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
| 143 | 111 113 139 142 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
| 144 | fvco3 | ⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | |
| 145 | 3 21 144 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
| 146 | fvco3 | ⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝐶 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) | |
| 147 | 3 31 146 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
| 148 | 147 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
| 149 | 145 148 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 150 | 149 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
| 151 | 143 150 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
| 152 | 151 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
| 153 | 152 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 154 | 109 153 | eleqtrd | ⊢ ( 𝜑 → ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 155 | eqid | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 156 | fco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) | |
| 157 | 1 3 156 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
| 158 | 10 9 155 6 157 4 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( 𝐾 · 𝐿 ) ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 159 | 16 154 158 | mpbir2and | ⊢ ( 𝜑 → 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( 𝐾 · 𝐿 ) ) |