This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by NM, 30-Jul-2007) (Proof shortened by Mario Carneiro, 5-May-2014) Usage of this theorem is discouraged because it depends on ax-mulf . Use mpomulcn instead. (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | addcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | mulcn | ⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | ax-mulf | ⊢ · : ( ℂ × ℂ ) ⟶ ℂ | |
| 3 | mulcn2 | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 · 𝑣 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) ) | |
| 4 | 1 2 3 | addcnlem | ⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |