This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvco.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| dvco.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | ||
| dvco.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) | ||
| dvco.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) | ||
| dvco.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| dvco.t | ⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) | ||
| dvco.df | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ dom ( 𝑆 D 𝐹 ) ) | ||
| dvco.dg | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) | ||
| Assertion | dvco | ⊢ ( 𝜑 → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvco.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 2 | dvco.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | |
| 3 | dvco.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) | |
| 4 | dvco.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) | |
| 5 | dvco.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 6 | dvco.t | ⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) | |
| 7 | dvco.df | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ dom ( 𝑆 D 𝐹 ) ) | |
| 8 | dvco.dg | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) | |
| 9 | dvfg | ⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) | |
| 10 | ffun | ⊢ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ → Fun ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) | |
| 11 | 6 9 10 | 3syl | ⊢ ( 𝜑 → Fun ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
| 12 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 14 | recnprss | ⊢ ( 𝑇 ∈ { ℝ , ℂ } → 𝑇 ⊆ ℂ ) | |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
| 16 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 17 | ffun | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) | |
| 18 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐹 ) → ( ( 𝐺 ‘ 𝐶 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) | |
| 19 | 5 16 17 18 | 4syl | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 20 | 7 19 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
| 21 | dvfg | ⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) | |
| 22 | ffun | ⊢ ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ → Fun ( 𝑇 D 𝐺 ) ) | |
| 23 | funfvbrb | ⊢ ( Fun ( 𝑇 D 𝐺 ) → ( 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝐶 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) | |
| 24 | 6 21 22 23 | 4syl | ⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝐶 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |
| 25 | 8 24 | mpbid | ⊢ ( 𝜑 → 𝐶 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) |
| 26 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 27 | 1 2 3 4 13 15 20 25 26 | dvcobr | ⊢ ( 𝜑 → 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |
| 28 | funbrfv | ⊢ ( Fun ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) → ( 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) ) | |
| 29 | 11 27 28 | sylc | ⊢ ( 𝜑 → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |