This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvcnvre . (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnv.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| dvcnv.k | ⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) | ||
| dvcnv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| dvcnv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) | ||
| dvcnv.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | ||
| dvcnv.i | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) | ||
| dvcnv.d | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| dvcnv.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) | ||
| dvcnv.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| Assertion | dvcnvlem | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnv.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | dvcnv.k | ⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) | |
| 3 | dvcnv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 4 | dvcnv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) | |
| 5 | dvcnv.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 6 | dvcnv.i | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) | |
| 7 | dvcnv.d | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 8 | dvcnv.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) | |
| 9 | dvcnv.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 10 | f1of | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 12 | 11 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝑌 ) |
| 13 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 14 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 16 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 17 | 13 15 16 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 18 | 2 17 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
| 19 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) → 𝐾 ∈ Top ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 21 | isopn3i | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑌 ∈ 𝐾 ) → ( ( int ‘ 𝐾 ) ‘ 𝑌 ) = 𝑌 ) | |
| 22 | 20 4 21 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐾 ) ‘ 𝑌 ) = 𝑌 ) |
| 23 | 12 22 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 24 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 25 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 26 | 5 24 25 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 27 | eldifi | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) → 𝑧 ∈ 𝑌 ) | |
| 28 | ffvelcdm | ⊢ ( ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ) | |
| 29 | 26 27 28 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ) |
| 30 | 29 | anim1i | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) → ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) ) |
| 31 | eldifsn | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { 𝐶 } ) ↔ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { 𝐶 } ) ) |
| 33 | 32 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { 𝐶 } ) ) |
| 34 | eldifi | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑦 ∈ 𝑋 ) | |
| 35 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 36 | 7 35 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 37 | 36 15 | sstrd | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 38 | 37 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ℂ ) |
| 39 | 34 38 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑦 ∈ ℂ ) |
| 40 | 36 9 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 41 | 15 40 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
| 43 | 39 42 | subcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑦 − 𝐶 ) ∈ ℂ ) |
| 44 | toponss | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ⊆ 𝑆 ) | |
| 45 | 18 4 44 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
| 46 | 45 15 | sstrd | ⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
| 47 | 11 46 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 48 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) | |
| 49 | 47 34 48 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 50 | 46 12 | sseldd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 52 | 49 51 | subcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 53 | eldifsni | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑦 ≠ 𝐶 ) | |
| 54 | 53 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑦 ≠ 𝐶 ) |
| 55 | 49 51 | subeq0ad | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) = 0 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
| 56 | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) | |
| 57 | 5 56 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 59 | 34 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑦 ∈ 𝑋 ) |
| 60 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ 𝑋 ) |
| 61 | f1fveq | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝑦 = 𝐶 ) ) | |
| 62 | 58 59 60 61 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝑦 = 𝐶 ) ) |
| 63 | 55 62 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) = 0 ↔ 𝑦 = 𝐶 ) ) |
| 64 | 63 | necon3bid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ≠ 0 ↔ 𝑦 ≠ 𝐶 ) ) |
| 65 | 54 64 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ≠ 0 ) |
| 66 | 43 52 65 | divcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 67 | limcresi | ⊢ ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) | |
| 68 | 26 | feqmptd | ⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 69 | 68 | reseq1d | ⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) ) |
| 70 | difss | ⊢ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ⊆ 𝑌 | |
| 71 | resmpt | ⊢ ( ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ⊆ 𝑌 → ( ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 72 | 70 71 | ax-mp | ⊢ ( ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 73 | 69 72 | eqtrdi | ⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 74 | 73 | oveq1d | ⊢ ( 𝜑 → ( ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 75 | 67 74 | sseqtrid | ⊢ ( 𝜑 → ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 76 | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐶 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) = 𝐶 ) | |
| 77 | 5 9 76 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |
| 78 | 6 12 | cnlimci | ⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ∈ ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 79 | 77 78 | eqeltrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 80 | 75 79 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 81 | 47 37 9 | dvlem | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ℂ ) |
| 82 | 39 42 54 | subne0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑦 − 𝐶 ) ≠ 0 ) |
| 83 | 52 43 65 82 | divne0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ≠ 0 ) |
| 84 | eldifsn | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ℂ ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ≠ 0 ) ) | |
| 85 | 81 83 84 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ( ℂ ∖ { 0 } ) ) |
| 86 | 85 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) : ( 𝑋 ∖ { 𝐶 } ) ⟶ ( ℂ ∖ { 0 } ) ) |
| 87 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 88 | 87 | a1i | ⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
| 89 | eqid | ⊢ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) = ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) | |
| 90 | 9 7 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) |
| 91 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 92 | ffun | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) | |
| 93 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) | |
| 94 | 3 91 92 93 | 4syl | ⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 95 | 90 94 | mpbid | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) |
| 96 | eqid | ⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) | |
| 97 | 2 1 96 15 47 36 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ↔ ( 𝐶 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 98 | 95 97 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
| 99 | 98 | simprd | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 100 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) | |
| 101 | 13 87 100 | mp2an | ⊢ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) |
| 102 | 101 | a1i | ⊢ ( 𝜑 → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
| 103 | 13 | a1i | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 104 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 105 | 102 103 104 | cnmptc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 1 ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn 𝐽 ) ) |
| 106 | 102 | cnmptid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑥 ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ) ) |
| 107 | 1 89 | divcn | ⊢ / ∈ ( ( 𝐽 ×t ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ) Cn 𝐽 ) |
| 108 | 107 | a1i | ⊢ ( 𝜑 → / ∈ ( ( 𝐽 ×t ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ) Cn 𝐽 ) ) |
| 109 | 102 105 106 108 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn 𝐽 ) ) |
| 110 | 3 91 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 111 | 7 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 112 | 110 111 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 113 | 112 9 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
| 114 | 110 | ffnd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ) |
| 115 | fnfvelrn | ⊢ ( ( ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ∧ 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ran ( 𝑆 D 𝐹 ) ) | |
| 116 | 114 90 115 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ran ( 𝑆 D 𝐹 ) ) |
| 117 | nelne2 | ⊢ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ran ( 𝑆 D 𝐹 ) ∧ ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ≠ 0 ) | |
| 118 | 116 8 117 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ≠ 0 ) |
| 119 | eldifsn | ⊢ ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ≠ 0 ) ) | |
| 120 | 113 118 119 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 121 | 101 | toponunii | ⊢ ( ℂ ∖ { 0 } ) = ∪ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) |
| 122 | 121 | cncnpi | ⊢ ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn 𝐽 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) CnP 𝐽 ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 123 | 109 120 122 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) CnP 𝐽 ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 124 | 86 88 1 89 99 123 | limccnp | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
| 125 | oveq2 | ⊢ ( 𝑥 = ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) → ( 1 / 𝑥 ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) | |
| 126 | eqid | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) | |
| 127 | ovex | ⊢ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ V | |
| 128 | 125 126 127 | fvmpt | ⊢ ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 129 | 120 128 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 130 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) | |
| 131 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ) | |
| 132 | oveq2 | ⊢ ( 𝑥 = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) → ( 1 / 𝑥 ) = ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) | |
| 133 | 85 130 131 132 | fmptco | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) ) |
| 134 | 52 43 65 82 | recdivd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) = ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 135 | 134 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
| 136 | 133 135 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
| 137 | 136 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) limℂ 𝐶 ) = ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
| 138 | 124 129 137 | 3eltr3d | ⊢ ( 𝜑 → ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
| 139 | oveq1 | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑦 − 𝐶 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) ) | |
| 140 | fveq2 | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 141 | 140 | oveq1d | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) |
| 142 | 139 141 | oveq12d | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 143 | eldifsni | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) → 𝑧 ≠ ( 𝐹 ‘ 𝐶 ) ) | |
| 144 | 143 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → 𝑧 ≠ ( 𝐹 ‘ 𝐶 ) ) |
| 145 | 144 | necomd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( 𝐹 ‘ 𝐶 ) ≠ 𝑧 ) |
| 146 | f1ocnvfvb | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝐶 ) = 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) | |
| 147 | 5 9 27 146 | syl2an3an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( 𝐹 ‘ 𝐶 ) = 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) |
| 148 | 147 | necon3abid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( 𝐹 ‘ 𝐶 ) ≠ 𝑧 ↔ ¬ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) |
| 149 | 145 148 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ¬ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) |
| 150 | 149 | pm2.21d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 → ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) ) |
| 151 | 150 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 152 | 33 66 80 138 142 151 | limcco | ⊢ ( 𝜑 → ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 153 | 77 | eqcomd | ⊢ ( 𝜑 → 𝐶 = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 154 | 153 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → 𝐶 = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 155 | 154 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 156 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑧 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) | |
| 157 | 5 27 156 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 158 | 157 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) = ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) |
| 159 | 155 158 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 160 | 159 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
| 161 | 160 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 162 | 152 161 | eleqtrd | ⊢ ( 𝜑 → ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
| 163 | eqid | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) | |
| 164 | 26 37 | fssd | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ ℂ ) |
| 165 | 2 1 163 15 164 45 | eldv | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ↔ ( ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
| 166 | 23 162 165 | mpbir2and | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |