This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| cnmpt1t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) | ||
| cnmpt12f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) ) | ||
| Assertion | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝐽 Cn 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | cnmpt1t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) | |
| 4 | cnmpt12f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) ) | |
| 5 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 6 | 5 | mpteq2i | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 7 | 1 2 3 | cnmpt1t | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 8 | 1 7 4 | cnmpt11f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ) ∈ ( 𝐽 Cn 𝑀 ) ) |
| 9 | 6 8 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝐽 Cn 𝑀 ) ) |