This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlimci.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐷 ) ) | |
| cnlimci.c | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| Assertion | cnlimci | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlimci.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐷 ) ) | |
| 2 | cnlimci.c | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 limℂ 𝑥 ) = ( 𝐹 limℂ 𝐵 ) ) | |
| 5 | 3 4 | eleq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 6 | cncfrss | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐷 ) → 𝐴 ⊆ ℂ ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 8 | cncfrss2 | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐷 ) → 𝐷 ⊆ ℂ ) | |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
| 10 | ssid | ⊢ ℂ ⊆ ℂ | |
| 11 | cncfss | ⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ 𝐷 ) ⊆ ( 𝐴 –cn→ ℂ ) ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝜑 → ( 𝐴 –cn→ 𝐷 ) ⊆ ( 𝐴 –cn→ ℂ ) ) |
| 13 | 12 1 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
| 14 | cnlimc | ⊢ ( 𝐴 ⊆ ℂ → ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) ) ) | |
| 15 | 14 | simplbda | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) |
| 16 | 7 13 15 | syl2anc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 limℂ 𝑥 ) ) |
| 17 | 5 16 2 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |