This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak version of dvcnvre , valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnv.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| dvcnv.k | ⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) | ||
| dvcnv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| dvcnv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) | ||
| dvcnv.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | ||
| dvcnv.i | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) | ||
| dvcnv.d | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| dvcnv.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) | ||
| Assertion | dvcnv | ⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) = ( 𝑥 ∈ 𝑌 ↦ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnv.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | dvcnv.k | ⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) | |
| 3 | dvcnv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 4 | dvcnv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) | |
| 5 | dvcnv.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 6 | dvcnv.i | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) | |
| 7 | dvcnv.d | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 8 | dvcnv.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) | |
| 9 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ) |
| 11 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 14 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 15 | 5 13 14 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 16 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 17 | 7 16 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 18 | 17 12 | sstrd | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 19 | 15 18 | fssd | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ ℂ ) |
| 20 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 21 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 22 | 20 12 21 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 23 | 2 22 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
| 24 | toponss | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ⊆ 𝑆 ) | |
| 25 | 23 4 24 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
| 26 | 12 19 25 | dvbss | ⊢ ( 𝜑 → dom ( 𝑆 D ◡ 𝐹 ) ⊆ 𝑌 ) |
| 27 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 28 | 5 27 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 29 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 30 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑌 ∈ 𝐾 ) |
| 31 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 32 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) |
| 33 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 34 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) |
| 35 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 36 | 1 2 29 30 31 32 33 34 35 | dvcnvlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 | 28 36 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 38 | reldv | ⊢ Rel ( 𝑆 D ◡ 𝐹 ) | |
| 39 | 38 | releldmi | ⊢ ( 𝑥 ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( 𝑆 D ◡ 𝐹 ) ) |
| 40 | 37 39 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑆 D ◡ 𝐹 ) ) |
| 41 | 26 40 | eqelssd | ⊢ ( 𝜑 → dom ( 𝑆 D ◡ 𝐹 ) = 𝑌 ) |
| 42 | 41 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D ◡ 𝐹 ) : 𝑌 ⟶ ℂ ) ) |
| 43 | 10 42 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) : 𝑌 ⟶ ℂ ) |
| 44 | 43 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) ) ) |
| 45 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ) |
| 46 | 45 | ffund | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → Fun ( 𝑆 D ◡ 𝐹 ) ) |
| 47 | funbrfv | ⊢ ( Fun ( 𝑆 D ◡ 𝐹 ) → ( 𝑥 ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 48 | 46 37 47 | sylc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 49 | 48 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 50 | 44 49 | eqtrd | ⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) = ( 𝑥 ∈ 𝑌 ↦ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |