This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the limit of F at B is C and G is continuous at C , then the limit of G o. F at B is G ( C ) . (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limccnp.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐷 ) | |
| limccnp.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) | ||
| limccnp.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| limccnp.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐷 ) | ||
| limccnp.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) | ||
| limccnp.b | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) ) | ||
| Assertion | limccnp | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccnp.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐷 ) | |
| 2 | limccnp.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) | |
| 3 | limccnp.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 4 | limccnp.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐷 ) | |
| 5 | limccnp.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) | |
| 6 | limccnp.b | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) ) | |
| 7 | 3 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 8 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( 𝐾 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) | |
| 9 | 7 2 8 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
| 10 | 4 9 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐷 ) ) |
| 11 | 7 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 12 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐷 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) ) → 𝐺 : 𝐷 ⟶ ℂ ) | |
| 13 | 10 11 6 12 | syl3anc | ⊢ ( 𝜑 → 𝐺 : 𝐷 ⟶ ℂ ) |
| 14 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 15 | 14 | cnprcl | ⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) → 𝐶 ∈ ∪ 𝐽 ) |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ∪ 𝐽 ) |
| 17 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐷 ) → 𝐷 = ∪ 𝐽 ) | |
| 18 | 10 17 | syl | ⊢ ( 𝜑 → 𝐷 = ∪ 𝐽 ) |
| 19 | 16 18 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑥 = 𝐵 ) → 𝐶 ∈ 𝐷 ) |
| 21 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐷 ) |
| 22 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) ) | |
| 23 | elsni | ⊢ ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 ) | |
| 24 | 23 | orim2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 25 | 22 24 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 27 | 26 | orcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝑥 = 𝐵 ∨ 𝑥 ∈ 𝐴 ) ) |
| 28 | 27 | orcanai | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 29 | 21 28 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 30 | 20 29 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐷 ) |
| 31 | 13 30 | cofmpt | ⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 32 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐷 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 33 | 21 28 32 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 | 33 | ifeq2da | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 | fvif | ⊢ ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 36 | 34 35 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) = ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 | 36 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 38 | 31 37 | eqtr4d | ⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 39 | eqid | ⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 40 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) | |
| 41 | 1 2 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 42 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 43 | limcrcl | ⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 44 | 5 43 | syl | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 45 | 44 | simp2d | ⊢ ( 𝜑 → dom 𝐹 ⊆ ℂ ) |
| 46 | 42 45 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 47 | 44 | simp3d | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 48 | 39 3 40 41 46 47 | ellimc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 49 | 5 48 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 50 | 3 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 51 | 50 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 52 | 30 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ 𝐷 ) |
| 53 | 47 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
| 54 | 46 53 | unssd | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 55 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 56 | 7 54 55 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 57 | toponuni | ⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 59 | 58 | feq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ 𝐷 ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝐷 ) ) |
| 60 | 52 59 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝐷 ) |
| 61 | eqid | ⊢ ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 62 | 7 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 63 | 61 62 | cnprest2 | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝐷 ∧ 𝐷 ⊆ ℂ ) → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) ) ) |
| 64 | 51 60 2 63 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) ) ) |
| 65 | 49 64 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) ) |
| 66 | 4 | oveq2i | ⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) = ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) |
| 67 | 66 | fveq1i | ⊢ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) = ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) |
| 68 | 65 67 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ) |
| 69 | iftrue | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) = 𝐶 ) | |
| 70 | ssun2 | ⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) | |
| 71 | snssg | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 72 | 47 71 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 73 | 70 72 | mpbiri | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 74 | 40 69 73 5 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
| 75 | 74 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) = ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) ) |
| 76 | 6 75 | eleqtrrd | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) ) |
| 77 | cnpco | ⊢ ( ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) ) → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) | |
| 78 | 68 76 77 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 79 | 38 78 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 80 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) | |
| 81 | fco | ⊢ ( ( 𝐺 : 𝐷 ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) | |
| 82 | 13 1 81 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) |
| 83 | 39 3 80 82 46 47 | ellimc | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 84 | 79 83 | mpbird | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐵 ) ) |