This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpomulcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| divcn.k | ⊢ 𝐾 = ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) | ||
| Assertion | divcn | ⊢ / ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpomulcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | divcn.k | ⊢ 𝐾 = ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) | |
| 3 | df-div | ⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 4 | eldifsn | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) | |
| 5 | divval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 6 | divrec | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) | |
| 7 | 5 6 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 9 | 4 8 | sylan2b | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 10 | 9 | mpoeq3ia | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 11 | 3 10 | eqtri | ⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 12 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 13 | 12 | a1i | ⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 14 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 15 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) | |
| 16 | 13 14 15 | sylancl | ⊢ ( ⊤ → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
| 17 | 2 16 | eqeltrid | ⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
| 18 | 13 17 | cnmpt1st | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 19 | 13 17 | cnmpt2nd | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 20 | eqid | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) | |
| 21 | eldifi | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ∈ ℂ ) | |
| 22 | eldifsni | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) | |
| 23 | 21 22 | reccld | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑧 ) ∈ ℂ ) |
| 24 | 20 23 | fmpti | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ |
| 25 | eqid | ⊢ ( if ( 1 ≤ ( ( abs ‘ 𝑥 ) · 𝑤 ) , 1 , ( ( abs ‘ 𝑥 ) · 𝑤 ) ) · ( ( abs ‘ 𝑥 ) / 2 ) ) = ( if ( 1 ≤ ( ( abs ‘ 𝑥 ) · 𝑤 ) , 1 , ( ( abs ‘ 𝑥 ) · 𝑤 ) ) · ( ( abs ‘ 𝑥 ) / 2 ) ) | |
| 26 | 25 | reccn2 | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) |
| 27 | ovres | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) = ( 𝑥 ( abs ∘ − ) 𝑦 ) ) | |
| 28 | eldifi | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ∈ ℂ ) | |
| 29 | eldifi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) | |
| 30 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 31 | 30 | cnmetdval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 32 | abssub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) | |
| 33 | 31 32 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 34 | 28 29 33 | syl2an | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 35 | 27 34 | eqtrd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 36 | 35 | breq1d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 ↔ ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 ) ) |
| 37 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( 1 / 𝑧 ) = ( 1 / 𝑥 ) ) | |
| 38 | ovex | ⊢ ( 1 / 𝑥 ) ∈ V | |
| 39 | 37 20 38 | fvmpt | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 40 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( 1 / 𝑧 ) = ( 1 / 𝑦 ) ) | |
| 41 | ovex | ⊢ ( 1 / 𝑦 ) ∈ V | |
| 42 | 40 20 41 | fvmpt | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) = ( 1 / 𝑦 ) ) |
| 43 | 39 42 | oveqan12d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) ) |
| 44 | eldifsni | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ≠ 0 ) | |
| 45 | 28 44 | reccld | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 46 | eldifsni | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 47 | 29 46 | reccld | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑦 ) ∈ ℂ ) |
| 48 | 30 | cnmetdval | ⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑦 ) ∈ ℂ ) → ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑥 ) − ( 1 / 𝑦 ) ) ) ) |
| 49 | abssub | ⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑦 ) ∈ ℂ ) → ( abs ‘ ( ( 1 / 𝑥 ) − ( 1 / 𝑦 ) ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) | |
| 50 | 48 49 | eqtrd | ⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑦 ) ∈ ℂ ) → ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) |
| 51 | 45 47 50 | syl2an | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) |
| 52 | 43 51 | eqtrd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) |
| 53 | 52 | breq1d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ↔ ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) |
| 54 | 36 53 | imbi12d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 55 | 54 | ralbidva | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 56 | 55 | rexbidv | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 ∈ ℝ+ ) → ( ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 58 | 26 57 | mpbird | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ) |
| 59 | 58 | rgen2 | ⊢ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑤 ∈ ℝ+ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) |
| 60 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 61 | xmetres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ∈ ( ∞Met ‘ ( ℂ ∖ { 0 } ) ) ) | |
| 62 | 60 14 61 | mp2an | ⊢ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ∈ ( ∞Met ‘ ( ℂ ∖ { 0 } ) ) |
| 63 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) = ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) | |
| 64 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 65 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) | |
| 66 | 63 64 65 | metrest | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) ) |
| 67 | 60 14 66 | mp2an | ⊢ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) |
| 68 | 2 67 | eqtri | ⊢ 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) |
| 69 | 68 64 | metcn | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ∈ ( ∞Met ‘ ( ℂ ∖ { 0 } ) ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ↔ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑤 ∈ ℝ+ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ) ) ) |
| 70 | 62 60 69 | mp2an | ⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ↔ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑤 ∈ ℝ+ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ) ) |
| 71 | 24 59 70 | mpbir2an | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) |
| 72 | 71 | a1i | ⊢ ( ⊤ → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 73 | 13 17 19 17 72 40 | cnmpt21 | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 74 | 1 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 75 | 74 | a1i | ⊢ ( ⊤ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 76 | oveq12 | ⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = ( 1 / 𝑦 ) ) → ( 𝑢 · 𝑣 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) | |
| 77 | 13 17 18 73 13 13 75 76 | cnmpt22 | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 78 | 77 | mptru | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) |
| 79 | 11 78 | eqeltri | ⊢ / ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) |