This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by the maps-to notation. (This is the operation analogue of fvmpt2 .) (Contributed by NM, 21-Feb-2004) (Revised by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovmpt4g.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt4g.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | elisset | ⊢ ( 𝐶 ∈ 𝑉 → ∃ 𝑧 𝑧 = 𝐶 ) | |
| 3 | moeq | ⊢ ∃* 𝑧 𝑧 = 𝐶 | |
| 4 | 3 | a1i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑧 𝑧 = 𝐶 ) |
| 5 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } | |
| 6 | 1 5 | eqtri | ⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
| 7 | 4 6 | ovidi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = 𝐶 → ( 𝑥 𝐹 𝑦 ) = 𝑧 ) ) |
| 8 | eqeq2 | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 𝐹 𝑦 ) = 𝑧 ↔ ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) | |
| 9 | 7 8 | mpbidi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = 𝐶 → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) |
| 10 | 9 | exlimdv | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑧 𝑧 = 𝐶 → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) |
| 11 | 2 10 | syl5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐶 ∈ 𝑉 → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) |
| 12 | 11 | 3impia | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |