This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcf1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| funcf1.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| funcf1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| Assertion | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcf1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | funcf1.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | funcf1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 5 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 6 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 7 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 8 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 10 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 11 | 3 10 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 15 | 13 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 16 | 1 2 4 5 6 7 8 9 14 15 | isfunc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 17 | 3 16 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 18 | 17 | simp1d | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |