This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curf2.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curf2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| curf2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curf2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curf2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| curf2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| curf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| curf2.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | ||
| curf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| curf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| curf2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| curf2.l | ⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) | ||
| curf2.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐸 ) | ||
| Assertion | curf2cl | ⊢ ( 𝜑 → 𝐿 ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curf2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | curf2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curf2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curf2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | curf2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | curf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 8 | curf2.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | |
| 9 | curf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 10 | curf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 11 | curf2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 12 | curf2.l | ⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) | |
| 13 | curf2.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐸 ) | |
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | curf2 | ⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 15 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 16 | 15 2 6 | xpcbas | ⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 17 | eqid | ⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 18 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 19 | relfunc | ⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) | |
| 20 | 1st2ndbr | ⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) | |
| 21 | 19 5 20 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 23 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) | |
| 24 | 9 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 25 | opelxpi | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑌 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) | |
| 26 | 10 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑌 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 27 | 16 17 18 22 24 26 | funcf2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
| 28 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 29 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 31 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
| 32 | 15 2 6 7 28 29 30 31 30 17 | xpchom2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
| 33 | 32 | feq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ↔ ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) ) |
| 34 | 27 33 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
| 35 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 36 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 37 | 6 28 8 36 30 | catidcl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 38 | 34 35 37 | fovcdmd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
| 39 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 40 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 41 | eqid | ⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) | |
| 42 | 1 2 39 36 40 6 29 41 30 | curf11 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
| 43 | df-ov | ⊢ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) | |
| 44 | 42 43 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) |
| 45 | eqid | ⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) | |
| 46 | 1 2 39 36 40 6 31 45 30 | curf11 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
| 47 | df-ov | ⊢ ( 𝑌 ( 1st ‘ 𝐹 ) 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) | |
| 48 | 46 47 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) |
| 49 | 44 48 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) = ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
| 50 | 38 49 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
| 51 | 50 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
| 52 | 6 | fvexi | ⊢ 𝐵 ∈ V |
| 53 | mptelixpg | ⊢ ( 𝐵 ∈ V → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) ) | |
| 54 | 52 53 | ax-mp | ⊢ ( ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
| 55 | 51 54 | sylibr | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
| 56 | 14 55 | eqeltrd | ⊢ ( 𝜑 → 𝐿 ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
| 57 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 58 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐶 ∈ Cat ) |
| 59 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑋 ∈ 𝐴 ) |
| 60 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 61 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑌 ∈ 𝐴 ) |
| 62 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 63 | 2 7 57 58 59 60 61 62 | catrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐾 ) |
| 64 | 2 7 57 58 59 60 61 62 | catlid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) = 𝐾 ) |
| 65 | 63 64 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) ) |
| 66 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐷 ∈ Cat ) |
| 67 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 68 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 69 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑤 ∈ 𝐵 ) | |
| 70 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) | |
| 71 | 6 28 8 66 67 68 69 70 | catlid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = 𝑓 ) |
| 72 | 6 28 8 66 67 68 69 70 | catrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) = 𝑓 ) |
| 73 | 71 72 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) ) |
| 74 | 65 73 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) 〉 = 〈 ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) , ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) 〉 ) |
| 75 | eqid | ⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 76 | 2 7 57 58 59 | catidcl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 77 | 6 28 8 66 69 | catidcl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐼 ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
| 78 | 15 2 6 7 28 59 67 59 69 60 68 75 61 69 76 70 62 77 | xpcco2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) = 〈 ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) 〉 ) |
| 79 | 37 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐼 ‘ 𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 80 | 2 7 57 58 61 | catidcl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∈ ( 𝑌 𝐻 𝑌 ) ) |
| 81 | 15 2 6 7 28 59 67 61 67 60 68 75 61 69 62 79 80 70 | xpcco2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) = 〈 ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) , ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) 〉 ) |
| 82 | 74 78 81 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) = ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) |
| 83 | 82 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
| 84 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 85 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 86 | 24 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 87 | 59 69 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑋 , 𝑤 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 88 | 61 69 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑌 , 𝑤 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 89 | 76 70 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ∈ ( ( 𝑋 𝐻 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 90 | 15 2 6 7 28 59 67 59 69 17 | xpchom2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) = ( ( 𝑋 𝐻 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 91 | 89 90 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ∈ ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) ) |
| 92 | 62 77 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 93 | 15 2 6 7 28 59 69 61 69 17 | xpchom2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 94 | 92 93 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ∈ ( 〈 𝑋 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) ) |
| 95 | 16 17 75 84 85 86 87 88 91 94 | funcco | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) = ( ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) ) |
| 96 | 26 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑌 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 97 | 62 79 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
| 98 | 15 2 6 7 28 59 67 61 67 17 | xpchom2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
| 99 | 97 98 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ∈ ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) ) |
| 100 | 80 70 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ∈ ( ( 𝑌 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 101 | 15 2 6 7 28 61 67 61 69 17 | xpchom2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑌 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) = ( ( 𝑌 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 102 | 100 101 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ∈ ( 〈 𝑌 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) ) |
| 103 | 16 17 75 84 85 86 96 88 99 102 | funcco | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) = ( ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
| 104 | 83 95 103 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) = ( ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
| 105 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 106 | 1 2 58 66 105 6 59 41 67 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
| 107 | 106 43 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) |
| 108 | 1 2 58 66 105 6 59 41 69 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 109 | df-ov | ⊢ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) | |
| 110 | 108 109 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) ) |
| 111 | 107 110 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ) |
| 112 | 1 2 58 66 105 6 61 45 69 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 113 | df-ov | ⊢ ( 𝑌 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) | |
| 114 | 112 113 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) |
| 115 | 111 114 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ) |
| 116 | 1 2 58 66 105 6 7 8 59 61 62 12 69 | curf2val | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑤 ) = ( 𝐾 ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ( 𝐼 ‘ 𝑤 ) ) ) |
| 117 | df-ov | ⊢ ( 𝐾 ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ( 𝐼 ‘ 𝑤 ) ) = ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) | |
| 118 | 116 117 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑤 ) = ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ) |
| 119 | 1 2 58 66 105 6 59 41 67 28 57 69 70 | curf12 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) 𝑓 ) ) |
| 120 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) 𝑓 ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) | |
| 121 | 119 120 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) |
| 122 | 115 118 121 | oveq123d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) ) |
| 123 | 1 2 58 66 105 6 61 45 67 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
| 124 | 123 47 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) |
| 125 | 107 124 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ) |
| 126 | 125 114 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ) |
| 127 | 1 2 58 66 105 6 61 45 67 28 57 69 70 | curf12 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) 𝑓 ) ) |
| 128 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) 𝑓 ) = ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) | |
| 129 | 127 128 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ) |
| 130 | 1 2 58 66 105 6 7 8 59 61 62 12 67 | curf2val | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑧 ) = ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) |
| 131 | df-ov | ⊢ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) | |
| 132 | 130 131 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑧 ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) |
| 133 | 126 129 132 | oveq123d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) = ( ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
| 134 | 104 122 133 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) ) |
| 135 | 134 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) ) |
| 136 | 1 2 3 4 5 6 9 41 | curf1cl | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 137 | 1 2 3 4 5 6 10 45 | curf1cl | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 138 | 13 6 28 18 84 136 137 | isnat2 | ⊢ ( 𝜑 → ( 𝐿 ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ↔ ( 𝐿 ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) ) ) ) |
| 139 | 56 135 138 | mpbir2and | ⊢ ( 𝜑 → 𝐿 ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ) |