This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| catidcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catidcl.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| catidcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catidcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catlid.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| catlid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| catlid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | catlid | ⊢ ( 𝜑 → ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | catidcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catidcl.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 4 | catidcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catidcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | catlid.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 7 | catlid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | catlid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑓 = 𝐹 → ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝑓 ) = ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) ) | |
| 10 | id | ⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ↔ ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) = 𝐹 ) ) |
| 12 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 13 | opeq1 | ⊢ ( 𝑥 = 𝑋 → 〈 𝑥 , 𝑌 〉 = 〈 𝑋 , 𝑌 〉 ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) ) |
| 15 | 14 | oveqd | ⊢ ( 𝑥 = 𝑋 → ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝑓 ) ) |
| 16 | 15 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ↔ ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) ) |
| 17 | 12 16 | raleqbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) ) |
| 18 | simpl | ⊢ ( ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) | |
| 19 | 18 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) |
| 20 | 19 | a1i | ⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) ) |
| 21 | 20 | ss2rabi | ⊢ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) } ⊆ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 } |
| 22 | 1 2 6 4 3 7 | cidval | ⊢ ( 𝜑 → ( 1 ‘ 𝑌 ) = ( ℩ 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) ) ) |
| 23 | 1 2 6 4 7 | catideu | ⊢ ( 𝜑 → ∃! 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) ) |
| 24 | riotacl2 | ⊢ ( ∃! 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) → ( ℩ 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) ) ∈ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) } ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) ) ∈ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) } ) |
| 26 | 22 25 | eqeltrd | ⊢ ( 𝜑 → ( 1 ‘ 𝑌 ) ∈ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑌 𝐻 𝑥 ) ( 𝑓 ( 〈 𝑌 , 𝑌 〉 · 𝑥 ) 𝑔 ) = 𝑓 ) } ) |
| 27 | 21 26 | sselid | ⊢ ( 𝜑 → ( 1 ‘ 𝑌 ) ∈ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 } ) |
| 28 | oveq1 | ⊢ ( 𝑔 = ( 1 ‘ 𝑌 ) → ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) ) | |
| 29 | 28 | eqeq1d | ⊢ ( 𝑔 = ( 1 ‘ 𝑌 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ↔ ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) ) |
| 30 | 29 | 2ralbidv | ⊢ ( 𝑔 = ( 1 ‘ 𝑌 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) ) |
| 31 | 30 | elrab | ⊢ ( ( 1 ‘ 𝑌 ) ∈ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 } ↔ ( ( 1 ‘ 𝑌 ) ∈ ( 𝑌 𝐻 𝑌 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) ) |
| 32 | 31 | simprbi | ⊢ ( ( 1 ‘ 𝑌 ) ∈ { 𝑔 ∈ ( 𝑌 𝐻 𝑌 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( 𝑔 ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 } → ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) |
| 33 | 27 32 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑌 ) ( ( 1 ‘ 𝑌 ) ( 〈 𝑥 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) |
| 34 | 17 33 5 | rspcdva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝑓 ) = 𝑓 ) |
| 35 | 11 34 8 | rspcdva | ⊢ ( 𝜑 → ( ( 1 ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) = 𝐹 ) |