This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| curfpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | ||
| curfpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| curfpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| curfpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ Cat ) | ||
| curfpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ Cat ) | ||
| curfpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curfpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curfpropd.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 ×c 𝐶 ) Func 𝐸 ) ) | ||
| Assertion | curfpropd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 curryF 𝐹 ) = ( 〈 𝐵 , 𝐷 〉 curryF 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| 2 | curfpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | |
| 3 | curfpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 4 | curfpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 5 | curfpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ Cat ) | |
| 6 | curfpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ Cat ) | |
| 7 | curfpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 8 | curfpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 9 | curfpropd.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 ×c 𝐶 ) Func 𝐸 ) ) | |
| 10 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 11 | 3 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 13 | 12 | mpteq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
| 14 | 12 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 16 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 17 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 19 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 20 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 21 | 15 16 17 18 19 20 | homfeqval | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 22 | 1 2 5 6 | cidpropd | ⊢ ( 𝜑 → ( Id ‘ 𝐴 ) = ( Id ‘ 𝐵 ) ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( Id ‘ 𝐴 ) = ( Id ‘ 𝐵 ) ) |
| 24 | 23 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) |
| 25 | 24 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) = ( ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) |
| 26 | 21 25 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) |
| 27 | 12 14 26 | mpoeq123dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 28 | 13 27 | opeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 〈 ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 = 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 29 | 10 28 | mpteq12dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) = ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 30 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 32 | eqid | ⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) | |
| 33 | eqid | ⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) | |
| 34 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 35 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) | |
| 36 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 37 | 31 32 33 34 35 36 | homfeqval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 38 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 39 | 3 4 7 8 | cidpropd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
| 40 | 39 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
| 41 | 40 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑧 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐶 ) ‘ 𝑧 ) ) = ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) |
| 43 | 38 42 | mpteq12dva | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐶 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) |
| 44 | 37 43 | mpteq12dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐶 ) ‘ 𝑧 ) ) ) ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 45 | 10 30 44 | mpoeq123dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐴 ) , 𝑦 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐶 ) ‘ 𝑧 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐵 ) , 𝑦 ∈ ( Base ‘ 𝐵 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ) |
| 46 | 29 45 | opeq12d | ⊢ ( 𝜑 → 〈 ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐴 ) , 𝑦 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐶 ) ‘ 𝑧 ) ) ) ) ) 〉 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐵 ) , 𝑦 ∈ ( Base ‘ 𝐵 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 47 | eqid | ⊢ ( 〈 𝐴 , 𝐶 〉 curryF 𝐹 ) = ( 〈 𝐴 , 𝐶 〉 curryF 𝐹 ) | |
| 48 | eqid | ⊢ ( Id ‘ 𝐴 ) = ( Id ‘ 𝐴 ) | |
| 49 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 50 | 47 31 5 7 9 15 16 48 32 49 | curfval | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 curryF 𝐹 ) = 〈 ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐴 ) , 𝑦 ∈ ( Base ‘ 𝐴 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐶 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 51 | eqid | ⊢ ( 〈 𝐵 , 𝐷 〉 curryF 𝐹 ) = ( 〈 𝐵 , 𝐷 〉 curryF 𝐹 ) | |
| 52 | eqid | ⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) | |
| 53 | 1 2 3 4 5 6 7 8 | xpcpropd | ⊢ ( 𝜑 → ( 𝐴 ×c 𝐶 ) = ( 𝐵 ×c 𝐷 ) ) |
| 54 | 53 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ×c 𝐶 ) Func 𝐸 ) = ( ( 𝐵 ×c 𝐷 ) Func 𝐸 ) ) |
| 55 | 9 54 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐵 ×c 𝐷 ) Func 𝐸 ) ) |
| 56 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 57 | eqid | ⊢ ( Id ‘ 𝐵 ) = ( Id ‘ 𝐵 ) | |
| 58 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 59 | 51 52 6 8 55 56 17 57 33 58 | curfval | ⊢ ( 𝜑 → ( 〈 𝐵 , 𝐷 〉 curryF 𝐹 ) = 〈 ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐵 ) , 𝑦 ∈ ( Base ‘ 𝐵 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 60 | 46 50 59 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 curryF 𝐹 ) = ( 〈 𝐵 , 𝐷 〉 curryF 𝐹 ) ) |