This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| catidcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catidcl.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| catidcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catidcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | catidcl | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | catidcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catidcl.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 4 | catidcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catidcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 7 | 1 2 6 4 3 5 | cidval | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 8 | 1 2 6 4 5 | catideu | ⊢ ( 𝜑 → ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 9 | riotacl | ⊢ ( ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) → ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ ( 𝑋 𝐻 𝑋 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 11 | 7 10 | eqeltrd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |