This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| curf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| curf1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) | ||
| Assertion | curf1cl | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | curf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | curf1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | curf1 | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 12 | 6 | fvexi | ⊢ 𝐵 ∈ V |
| 13 | 12 | mptex | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) ∈ V |
| 14 | 12 12 | mpoex | ⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ∈ V |
| 15 | 13 14 | op1std | ⊢ ( 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
| 16 | 11 15 | syl | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
| 17 | 13 14 | op2ndd | ⊢ ( 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 18 | 11 17 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 19 | 16 18 | opeq12d | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 20 | 11 19 | eqtr4d | ⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 22 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 23 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 24 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 25 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 26 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 27 | funcrcl | ⊢ ( 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 28 | 5 27 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 29 | 28 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 30 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 31 | 30 2 6 | xpcbas | ⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 32 | relfunc | ⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) | |
| 33 | 1st2ndbr | ⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) | |
| 34 | 32 5 33 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 35 | 31 21 34 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) : ( 𝐴 × 𝐵 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1st ‘ 𝐹 ) : ( 𝐴 × 𝐵 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 37 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 38 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 39 | 36 37 38 | fovcdmd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐸 ) ) |
| 40 | 16 39 | fmpt3d | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
| 41 | eqid | ⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) | |
| 42 | ovex | ⊢ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∈ V | |
| 43 | 42 | mptex | ⊢ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ∈ V |
| 44 | 41 43 | fnmpoi | ⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) Fn ( 𝐵 × 𝐵 ) |
| 45 | 18 | fneq1d | ⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 46 | 44 45 | mpbiri | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ) |
| 47 | 18 | oveqd | ⊢ ( 𝜑 → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) = ( 𝑦 ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 𝑧 ) ) |
| 48 | 41 | ovmpt4g | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ∈ V ) → ( 𝑦 ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 𝑧 ) = ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) |
| 49 | 43 48 | mp3an3 | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 𝑧 ) = ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) |
| 50 | 47 49 | sylan9eq | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) = ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) |
| 51 | eqid | ⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 52 | 34 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 53 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑋 ∈ 𝐴 ) |
| 54 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑦 ∈ 𝐵 ) | |
| 55 | 53 54 | opelxpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 〈 𝑋 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 56 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑧 ∈ 𝐵 ) | |
| 57 | 53 56 | opelxpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 58 | 31 51 22 52 55 57 | funcf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) : ( 〈 𝑋 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑧 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) ) |
| 59 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 60 | 30 31 59 9 51 55 57 | xpchom | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 〈 𝑋 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑧 〉 ) = ( ( ( 1st ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐶 ) ( 1st ‘ 〈 𝑋 , 𝑧 〉 ) ) × ( ( 2nd ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 〈 𝑋 , 𝑧 〉 ) ) ) ) |
| 61 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝐶 ∈ Cat ) |
| 62 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝐷 ∈ Cat ) |
| 63 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 64 | 1 2 61 62 63 6 53 8 54 | curf11 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 65 | df-ov | ⊢ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) | |
| 66 | 64 65 | eqtr2di | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) = ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ) |
| 67 | 1 2 61 62 63 6 53 8 56 | curf11 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
| 68 | df-ov | ⊢ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) | |
| 69 | 67 68 | eqtr2di | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) = ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) |
| 70 | 66 69 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) = ( ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) ) |
| 71 | 60 70 | feq23d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) : ( 〈 𝑋 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑧 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) ↔ ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) : ( ( ( 1st ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐶 ) ( 1st ‘ 〈 𝑋 , 𝑧 〉 ) ) × ( ( 2nd ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 〈 𝑋 , 𝑧 〉 ) ) ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) ) ) |
| 72 | 58 71 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) : ( ( ( 1st ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐶 ) ( 1st ‘ 〈 𝑋 , 𝑧 〉 ) ) × ( ( 2nd ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 〈 𝑋 , 𝑧 〉 ) ) ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) ) |
| 73 | 2 59 10 61 53 | catidcl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 74 | op1stg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 1st ‘ 〈 𝑋 , 𝑦 〉 ) = 𝑋 ) | |
| 75 | 53 54 74 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 1st ‘ 〈 𝑋 , 𝑦 〉 ) = 𝑋 ) |
| 76 | op1stg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 〈 𝑋 , 𝑧 〉 ) = 𝑋 ) | |
| 77 | 53 56 76 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 1st ‘ 〈 𝑋 , 𝑧 〉 ) = 𝑋 ) |
| 78 | 75 77 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 1st ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐶 ) ( 1st ‘ 〈 𝑋 , 𝑧 〉 ) ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 79 | 73 78 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( ( 1st ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐶 ) ( 1st ‘ 〈 𝑋 , 𝑧 〉 ) ) ) |
| 80 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) | |
| 81 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑦 〉 ) = 𝑦 ) | |
| 82 | 53 54 81 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 2nd ‘ 〈 𝑋 , 𝑦 〉 ) = 𝑦 ) |
| 83 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑧 〉 ) = 𝑧 ) | |
| 84 | 53 56 83 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( 2nd ‘ 〈 𝑋 , 𝑧 〉 ) = 𝑧 ) |
| 85 | 82 84 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( 2nd ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 〈 𝑋 , 𝑧 〉 ) ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 86 | 80 85 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → 𝑔 ∈ ( ( 2nd ‘ 〈 𝑋 , 𝑦 〉 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 〈 𝑋 , 𝑧 〉 ) ) ) |
| 87 | 72 79 86 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ∈ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) ) |
| 88 | 50 87 | fmpt3d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) ) |
| 89 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 90 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 91 | eqid | ⊢ ( Id ‘ ( 𝐶 ×c 𝐷 ) ) = ( Id ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 92 | 30 89 90 2 6 10 23 91 37 38 | xpcid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑋 , 𝑦 〉 ) = 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) |
| 93 | 92 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑋 , 𝑦 〉 ) ) = ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) ) |
| 94 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) | |
| 95 | 93 94 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑋 , 𝑦 〉 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) |
| 96 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 97 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑋 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) | |
| 98 | 7 97 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑋 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 99 | 31 91 24 96 98 | funcid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑋 , 𝑦 〉 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ) ) |
| 100 | 95 99 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ) ) |
| 101 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 102 | 6 9 23 90 38 | catidcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 103 | 1 2 89 90 101 6 37 8 38 9 10 38 102 | curf12 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑦 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) |
| 104 | 1 2 89 90 101 6 37 8 38 | curf11 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 105 | 104 65 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ) |
| 106 | 105 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ) ) |
| 107 | 100 103 106 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑦 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ) ) |
| 108 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑋 ∈ 𝐴 ) |
| 109 | simp21 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 110 | simp22 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 111 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 112 | eqid | ⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 113 | simp23 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑤 ∈ 𝐵 ) | |
| 114 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐶 ∈ Cat ) |
| 115 | 2 59 10 114 108 | catidcl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 116 | simp3l | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) | |
| 117 | simp3r | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) | |
| 118 | 30 2 6 59 9 108 109 108 110 111 25 112 108 113 115 116 115 117 | xpcco2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ( 〈 〈 𝑋 , 𝑦 〉 , 〈 𝑋 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) = 〈 ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) |
| 119 | 2 59 10 114 108 111 108 115 | catlid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 120 | 119 | opeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 = 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) |
| 121 | 118 120 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ( 〈 〈 𝑋 , 𝑦 〉 , 〈 𝑋 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) = 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) |
| 122 | 121 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ( 〈 〈 𝑋 , 𝑦 〉 , 〈 𝑋 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) ) = ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) ) |
| 123 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) | |
| 124 | 122 123 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ( 〈 〈 𝑋 , 𝑦 〉 , 〈 𝑋 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) ) |
| 125 | 34 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 126 | 108 109 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑋 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 127 | 108 110 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 128 | 108 113 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑋 , 𝑤 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 129 | 115 116 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
| 130 | 30 2 6 59 9 108 109 108 110 51 | xpchom2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑧 〉 ) = ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
| 131 | 129 130 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ∈ ( 〈 𝑋 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑧 〉 ) ) |
| 132 | 115 117 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 133 | 30 2 6 59 9 108 110 108 113 51 | xpchom2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) = ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 134 | 132 133 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ∈ ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) ) |
| 135 | 31 51 112 26 125 126 127 128 131 134 | funcco | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ( 〈 〈 𝑋 , 𝑦 〉 , 〈 𝑋 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) ) = ( ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) ) ) |
| 136 | 124 135 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) ) ) |
| 137 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐷 ∈ Cat ) |
| 138 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 139 | 6 9 25 137 109 110 113 116 117 | catcocl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
| 140 | 1 2 114 137 138 6 108 8 109 9 10 113 139 | curf12 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑤 ) ‘ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) ) |
| 141 | 1 2 114 137 138 6 108 8 109 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 142 | 141 65 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) ) |
| 143 | 1 2 114 137 138 6 108 8 110 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
| 144 | 143 68 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) |
| 145 | 142 144 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) 〉 ) |
| 146 | 1 2 114 137 138 6 108 8 113 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑤 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 147 | df-ov | ⊢ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) | |
| 148 | 146 147 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) ) |
| 149 | 145 148 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) ) ) |
| 150 | 1 2 114 137 138 6 108 8 110 9 10 113 117 | curf12 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ 𝐾 ) 𝑤 ) ‘ ℎ ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ℎ ) ) |
| 151 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ℎ ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ) | |
| 152 | 150 151 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ 𝐾 ) 𝑤 ) ‘ ℎ ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ) ) |
| 153 | 1 2 114 137 138 6 108 8 109 9 10 110 116 | curf12 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑔 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) |
| 154 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) = ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) | |
| 155 | 153 154 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑔 ) = ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) ) |
| 156 | 149 152 155 | oveq123d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑧 ( 2nd ‘ 𝐾 ) 𝑤 ) ‘ ℎ ) ( 〈 ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑔 ) ) = ( ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , ℎ 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑔 〉 ) ) ) |
| 157 | 136 140 156 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑤 ) ‘ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( ( ( 𝑧 ( 2nd ‘ 𝐾 ) 𝑤 ) ‘ ℎ ) ( 〈 ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑔 ) ) ) |
| 158 | 6 21 9 22 23 24 25 26 4 29 40 46 88 107 157 | isfuncd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 159 | df-br | ⊢ ( ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐾 ) ↔ 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 160 | 158 159 | sylib | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 161 | 20 160 | eqeltrd | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |