This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cidfn.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| cidfn.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| Assertion | cidfn | ⊢ ( 𝐶 ∈ Cat → 1 Fn 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidfn.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | cidfn.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 3 | riotaex | ⊢ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ V | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) | |
| 5 | 3 4 | fnmpti | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) Fn 𝐵 |
| 6 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 8 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 9 | 1 6 7 8 2 | cidfval | ⊢ ( 𝐶 ∈ Cat → 1 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
| 10 | 9 | fneq1d | ⊢ ( 𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) Fn 𝐵 ) ) |
| 11 | 5 10 | mpbiri | ⊢ ( 𝐶 ∈ Cat → 1 Fn 𝐵 ) |