This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpccat.t | ⊢ 𝑇 = ( 𝐶 ×c 𝐷 ) | |
| xpccat.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| xpccat.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| xpccat.x | ⊢ 𝑋 = ( Base ‘ 𝐶 ) | ||
| xpccat.y | ⊢ 𝑌 = ( Base ‘ 𝐷 ) | ||
| xpccat.i | ⊢ 𝐼 = ( Id ‘ 𝐶 ) | ||
| xpccat.j | ⊢ 𝐽 = ( Id ‘ 𝐷 ) | ||
| xpcid.1 | ⊢ 1 = ( Id ‘ 𝑇 ) | ||
| xpcid.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | ||
| xpcid.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) | ||
| Assertion | xpcid | ⊢ ( 𝜑 → ( 1 ‘ 〈 𝑅 , 𝑆 〉 ) = 〈 ( 𝐼 ‘ 𝑅 ) , ( 𝐽 ‘ 𝑆 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpccat.t | ⊢ 𝑇 = ( 𝐶 ×c 𝐷 ) | |
| 2 | xpccat.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | xpccat.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | xpccat.x | ⊢ 𝑋 = ( Base ‘ 𝐶 ) | |
| 5 | xpccat.y | ⊢ 𝑌 = ( Base ‘ 𝐷 ) | |
| 6 | xpccat.i | ⊢ 𝐼 = ( Id ‘ 𝐶 ) | |
| 7 | xpccat.j | ⊢ 𝐽 = ( Id ‘ 𝐷 ) | |
| 8 | xpcid.1 | ⊢ 1 = ( Id ‘ 𝑇 ) | |
| 9 | xpcid.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | |
| 10 | xpcid.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) | |
| 11 | df-ov | ⊢ ( 𝑅 1 𝑆 ) = ( 1 ‘ 〈 𝑅 , 𝑆 〉 ) | |
| 12 | 1 2 3 4 5 6 7 | xpccatid | ⊢ ( 𝜑 → ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝐼 ‘ 𝑥 ) , ( 𝐽 ‘ 𝑦 ) 〉 ) ) ) |
| 13 | 12 | simprd | ⊢ ( 𝜑 → ( Id ‘ 𝑇 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝐼 ‘ 𝑥 ) , ( 𝐽 ‘ 𝑦 ) 〉 ) ) |
| 14 | 8 13 | eqtrid | ⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝐼 ‘ 𝑥 ) , ( 𝐽 ‘ 𝑦 ) 〉 ) ) |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑅 ∧ 𝑦 = 𝑆 ) ) → 𝑥 = 𝑅 ) | |
| 16 | 15 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑅 ∧ 𝑦 = 𝑆 ) ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑅 ) ) |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑅 ∧ 𝑦 = 𝑆 ) ) → 𝑦 = 𝑆 ) | |
| 18 | 17 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑅 ∧ 𝑦 = 𝑆 ) ) → ( 𝐽 ‘ 𝑦 ) = ( 𝐽 ‘ 𝑆 ) ) |
| 19 | 16 18 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑅 ∧ 𝑦 = 𝑆 ) ) → 〈 ( 𝐼 ‘ 𝑥 ) , ( 𝐽 ‘ 𝑦 ) 〉 = 〈 ( 𝐼 ‘ 𝑅 ) , ( 𝐽 ‘ 𝑆 ) 〉 ) |
| 20 | opex | ⊢ 〈 ( 𝐼 ‘ 𝑅 ) , ( 𝐽 ‘ 𝑆 ) 〉 ∈ V | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → 〈 ( 𝐼 ‘ 𝑅 ) , ( 𝐽 ‘ 𝑆 ) 〉 ∈ V ) |
| 22 | 14 19 9 10 21 | ovmpod | ⊢ ( 𝜑 → ( 𝑅 1 𝑆 ) = 〈 ( 𝐼 ‘ 𝑅 ) , ( 𝐽 ‘ 𝑆 ) 〉 ) |
| 23 | 11 22 | eqtr3id | ⊢ ( 𝜑 → ( 1 ‘ 〈 𝑅 , 𝑆 〉 ) = 〈 ( 𝐼 ‘ 𝑅 ) , ( 𝐽 ‘ 𝑆 ) 〉 ) |