This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| curfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| curfval.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| curfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| curfval.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | ||
| Assertion | curfval | ⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | curfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 8 | curfval.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 9 | curfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 10 | curfval.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | |
| 11 | df-curf | ⊢ curryF = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑒 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 ) | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → curryF = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑒 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 ) ) |
| 13 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑒 ) ∈ V ) | |
| 14 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → 𝑒 = 〈 𝐶 , 𝐷 〉 ) | |
| 15 | 14 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑒 ) = ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 16 | op1stg | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) | |
| 17 | 3 4 16 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 19 | 15 18 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑒 ) = 𝐶 ) |
| 20 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑒 ) ∈ V ) | |
| 21 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → 𝑒 = 〈 𝐶 , 𝐷 〉 ) |
| 22 | 21 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑒 ) = ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 23 | op2ndg | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) | |
| 24 | 3 4 23 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 26 | 22 25 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑒 ) = 𝐷 ) |
| 27 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑐 = 𝐶 ) | |
| 28 | 27 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
| 29 | 28 2 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑐 ) = 𝐴 ) |
| 30 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) | |
| 31 | 30 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑑 ) = ( Base ‘ 𝐷 ) ) |
| 32 | 31 6 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑑 ) = 𝐵 ) |
| 33 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) | |
| 34 | 33 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑓 = 𝐹 ) |
| 35 | 34 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 1st ‘ 𝑓 ) = ( 1st ‘ 𝐹 ) ) |
| 36 | 35 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 37 | 32 36 | mpteq12dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
| 38 | 30 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑑 ) = ( Hom ‘ 𝐷 ) ) |
| 39 | 38 7 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑑 ) = 𝐽 ) |
| 40 | 39 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) = ( 𝑦 𝐽 𝑧 ) ) |
| 41 | 34 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 2nd ‘ 𝑓 ) = ( 2nd ‘ 𝐹 ) ) |
| 42 | 41 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) ) |
| 43 | 27 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 44 | 43 8 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑐 ) = 1 ) |
| 45 | 44 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
| 46 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑔 = 𝑔 ) | |
| 47 | 42 45 46 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) = ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) |
| 48 | 40 47 | mpteq12dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) |
| 49 | 32 32 48 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 50 | 37 49 | opeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 51 | 29 50 | mpteq12dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 52 | 27 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
| 53 | 52 9 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 54 | 53 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 55 | 41 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) = ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ) |
| 56 | 30 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑑 ) = ( Id ‘ 𝐷 ) ) |
| 57 | 56 10 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑑 ) = 𝐼 ) |
| 58 | 57 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) = ( 𝐼 ‘ 𝑧 ) ) |
| 59 | 55 46 58 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) = ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) |
| 60 | 32 59 | mpteq12dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 61 | 54 60 | mpteq12dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) = ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) |
| 62 | 29 29 61 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ) |
| 63 | 51 62 | opeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 64 | 20 26 63 | csbied2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 65 | 13 19 64 | csbied2 | ⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ⦋ ( 1st ‘ 𝑒 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 66 | opex | ⊢ 〈 𝐶 , 𝐷 〉 ∈ V | |
| 67 | 66 | a1i | ⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ V ) |
| 68 | 5 | elexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 69 | opex | ⊢ 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ∈ V | |
| 70 | 69 | a1i | ⊢ ( 𝜑 → 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ∈ V ) |
| 71 | 12 65 67 68 70 | ovmpod | ⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 72 | 1 71 | eqtrid | ⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |