This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpcco2.t | ⊢ 𝑇 = ( 𝐶 ×c 𝐷 ) | |
| xpcco2.x | ⊢ 𝑋 = ( Base ‘ 𝐶 ) | ||
| xpcco2.y | ⊢ 𝑌 = ( Base ‘ 𝐷 ) | ||
| xpcco2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| xpcco2.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| xpcco2.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑋 ) | ||
| xpcco2.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑌 ) | ||
| xpcco2.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| xpcco2.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑌 ) | ||
| xpchom2.k | ⊢ 𝐾 = ( Hom ‘ 𝑇 ) | ||
| Assertion | xpchom2 | ⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 𝐾 〈 𝑃 , 𝑄 〉 ) = ( ( 𝑀 𝐻 𝑃 ) × ( 𝑁 𝐽 𝑄 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcco2.t | ⊢ 𝑇 = ( 𝐶 ×c 𝐷 ) | |
| 2 | xpcco2.x | ⊢ 𝑋 = ( Base ‘ 𝐶 ) | |
| 3 | xpcco2.y | ⊢ 𝑌 = ( Base ‘ 𝐷 ) | |
| 4 | xpcco2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | xpcco2.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 6 | xpcco2.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑋 ) | |
| 7 | xpcco2.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑌 ) | |
| 8 | xpcco2.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 9 | xpcco2.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑌 ) | |
| 10 | xpchom2.k | ⊢ 𝐾 = ( Hom ‘ 𝑇 ) | |
| 11 | 1 2 3 | xpcbas | ⊢ ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) |
| 12 | 6 7 | opelxpd | ⊢ ( 𝜑 → 〈 𝑀 , 𝑁 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 13 | 8 9 | opelxpd | ⊢ ( 𝜑 → 〈 𝑃 , 𝑄 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 14 | 1 11 4 5 10 12 13 | xpchom | ⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 𝐾 〈 𝑃 , 𝑄 〉 ) = ( ( ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) 𝐻 ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) ) × ( ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) 𝐽 ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) ) ) ) |
| 15 | op1stg | ⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌 ) → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) | |
| 16 | 6 7 15 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) |
| 17 | op1stg | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌 ) → ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑃 ) | |
| 18 | 8 9 17 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑃 ) |
| 19 | 16 18 | oveq12d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) 𝐻 ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) ) = ( 𝑀 𝐻 𝑃 ) ) |
| 20 | op2ndg | ⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌 ) → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) | |
| 21 | 6 7 20 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) |
| 22 | op2ndg | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌 ) → ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑄 ) | |
| 23 | 8 9 22 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑄 ) |
| 24 | 21 23 | oveq12d | ⊢ ( 𝜑 → ( ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) 𝐽 ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) ) = ( 𝑁 𝐽 𝑄 ) ) |
| 25 | 19 24 | xpeq12d | ⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) 𝐻 ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) ) × ( ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) 𝐽 ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) ) ) = ( ( 𝑀 𝐻 𝑃 ) × ( 𝑁 𝐽 𝑄 ) ) ) |
| 26 | 14 25 | eqtrd | ⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 𝐾 〈 𝑃 , 𝑄 〉 ) = ( ( 𝑀 𝐻 𝑃 ) × ( 𝑁 𝐽 𝑄 ) ) ) |