This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| isfunc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| isfunc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| isfunc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| isfunc.1 | ⊢ 1 = ( Id ‘ 𝐷 ) | ||
| isfunc.i | ⊢ 𝐼 = ( Id ‘ 𝐸 ) | ||
| isfunc.x | ⊢ · = ( comp ‘ 𝐷 ) | ||
| isfunc.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| isfunc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| isfunc.e | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | ||
| isfuncd.1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | ||
| isfuncd.2 | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐵 × 𝐵 ) ) | ||
| isfuncd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) | ||
| isfuncd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| isfuncd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) | ||
| Assertion | isfuncd | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | isfunc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | isfunc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | isfunc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | isfunc.1 | ⊢ 1 = ( Id ‘ 𝐷 ) | |
| 6 | isfunc.i | ⊢ 𝐼 = ( Id ‘ 𝐸 ) | |
| 7 | isfunc.x | ⊢ · = ( comp ‘ 𝐷 ) | |
| 8 | isfunc.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 9 | isfunc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 10 | isfunc.e | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | |
| 11 | isfuncd.1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 12 | isfuncd.2 | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐵 × 𝐵 ) ) | |
| 13 | isfuncd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 14 | isfuncd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 15 | isfuncd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) | |
| 16 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | 16 16 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 18 | fnex | ⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ( 𝐵 × 𝐵 ) ∈ V ) → 𝐺 ∈ V ) | |
| 19 | 12 17 18 | sylancl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 20 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∈ V | |
| 21 | ovex | ⊢ ( 𝑥 𝐻 𝑦 ) ∈ V | |
| 22 | 20 21 | elmap | ⊢ ( ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 23 | 13 22 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) |
| 24 | 23 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 26 | df-ov | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 27 | 25 26 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 28 | vex | ⊢ 𝑥 ∈ V | |
| 29 | vex | ⊢ 𝑦 ∈ V | |
| 30 | 28 29 | op1std | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 31 | 30 | fveq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 32 | 28 29 | op2ndd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 33 | 32 | fveq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 34 | 31 33 | oveq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 36 | df-ov | ⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 37 | 35 36 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 38 | 34 37 | oveq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) |
| 39 | 27 38 | eleq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) ) |
| 40 | 39 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) |
| 41 | 24 40 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 42 | elixp2 | ⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) | |
| 43 | 19 12 41 42 | syl3anbrc | ⊢ ( 𝜑 → 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 44 | 15 | 3expia | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 45 | 44 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝐵 → ( ( 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) ) |
| 46 | 45 | imp43 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 47 | 46 | ralrimivv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) |
| 48 | 47 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) |
| 49 | 14 48 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 50 | 49 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 51 | 1 2 3 4 5 6 7 8 9 10 | isfunc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 52 | 11 43 50 51 | mpbir3and | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |