This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curf2.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curf2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| curf2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curf2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curf2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| curf2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| curf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| curf2.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | ||
| curf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| curf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| curf2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| curf2.l | ⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) | ||
| curf2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | curf2val | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝑍 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ( 𝐼 ‘ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curf2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | curf2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curf2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curf2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | curf2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | curf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 8 | curf2.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | |
| 9 | curf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 10 | curf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 11 | curf2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 12 | curf2.l | ⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) | |
| 13 | curf2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | curf2 | ⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝑧 = 𝑍 ) | |
| 16 | 15 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 〈 𝑋 , 𝑧 〉 = 〈 𝑋 , 𝑍 〉 ) |
| 17 | 15 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 〈 𝑌 , 𝑧 〉 = 〈 𝑌 , 𝑍 〉 ) |
| 18 | 16 17 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) = ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ) |
| 19 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐾 = 𝐾 ) | |
| 20 | 15 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑍 ) ) |
| 21 | 18 19 20 | oveq123d | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ( 𝐼 ‘ 𝑍 ) ) ) |
| 22 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ( 𝐼 ‘ 𝑍 ) ) ∈ V ) | |
| 23 | 14 21 13 22 | fvmptd | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝑍 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ( 𝐼 ‘ 𝑍 ) ) ) |