This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curf2.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curf2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| curf2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curf2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curf2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| curf2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| curf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| curf2.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | ||
| curf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| curf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| curf2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| curf2.l | ⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) | ||
| Assertion | curf2 | ⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curf2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | curf2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curf2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curf2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | curf2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | curf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 8 | curf2.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | |
| 9 | curf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 10 | curf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 11 | curf2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 12 | curf2.l | ⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) | |
| 13 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 14 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 15 | 1 2 3 4 5 6 13 14 7 8 | curfval | ⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 16 | 2 | fvexi | ⊢ 𝐴 ∈ V |
| 17 | 16 | mptex | ⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ∈ V |
| 18 | 16 16 | mpoex | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ∈ V |
| 19 | 17 18 | op2ndd | ⊢ ( 𝐺 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ) |
| 20 | 15 19 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ) |
| 21 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐴 ) |
| 22 | ovex | ⊢ ( 𝑥 𝐻 𝑦 ) ∈ V | |
| 23 | 22 | mptex | ⊢ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ∈ V |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ∈ V ) |
| 25 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 26 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) | |
| 27 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) | |
| 28 | 26 27 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 29 | 25 28 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝐾 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 30 | 6 | fvexi | ⊢ 𝐵 ∈ V |
| 31 | 30 | mptex | ⊢ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ V |
| 32 | 31 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ V ) |
| 33 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 𝑥 = 𝑋 ) | |
| 34 | 33 | opeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 〈 𝑥 , 𝑧 〉 = 〈 𝑋 , 𝑧 〉 ) |
| 35 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 𝑦 = 𝑌 ) | |
| 36 | 35 | opeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑌 , 𝑧 〉 ) |
| 37 | 34 36 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) = ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ) |
| 38 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 𝑔 = 𝐾 ) | |
| 39 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑧 ) ) | |
| 40 | 37 38 39 | oveq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) = ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) |
| 41 | 40 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 42 | 29 32 41 | fvmptdv2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) = ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) |
| 43 | 9 21 24 42 | ovmpodv | ⊢ ( 𝜑 → ( ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) |
| 44 | 20 43 | mpd | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 45 | 12 44 | eqtrid | ⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |