This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcco.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| funcco.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| funcco.o | ⊢ · = ( comp ‘ 𝐷 ) | ||
| funcco.O | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| funcco.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| funcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| funcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| funcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| funcco.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| funcco.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| Assertion | funcco | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcco.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | funcco.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 3 | funcco.o | ⊢ · = ( comp ‘ 𝐷 ) | |
| 4 | funcco.O | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 5 | funcco.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 6 | funcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | funcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | funcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | funcco.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | funcco.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 12 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 13 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 14 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 15 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 16 | 5 15 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 17 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 20 | 18 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 21 | 1 11 2 12 13 14 3 4 19 20 | isfunc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 22 | 5 21 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 23 | 22 | simp3d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 24 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 25 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
| 26 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 27 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑥 = 𝑋 ) | |
| 28 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 ) | |
| 29 | 27 28 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 30 | 26 29 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑀 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 31 | 10 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑁 ∈ ( 𝑌 𝐻 𝑍 ) ) |
| 32 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑦 = 𝑌 ) | |
| 33 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑧 = 𝑍 ) | |
| 34 | 32 33 | oveq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) ) |
| 35 | 31 34 | eleqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑁 ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 36 | simp-5r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑥 = 𝑋 ) | |
| 37 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑧 = 𝑍 ) | |
| 38 | 36 37 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑥 𝐺 𝑧 ) = ( 𝑋 𝐺 𝑍 ) ) |
| 39 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑦 = 𝑌 ) | |
| 40 | 36 39 | opeq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑌 〉 ) |
| 41 | 40 37 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
| 42 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 ) | |
| 43 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑚 = 𝑀 ) | |
| 44 | 41 42 43 | oveq123d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) = ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) |
| 45 | 38 44 | fveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) ) |
| 46 | 36 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 47 | 39 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 48 | 46 47 | opeq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ) |
| 49 | 37 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑍 ) ) |
| 50 | 48 49 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) = ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ) |
| 51 | 39 37 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑦 𝐺 𝑧 ) = ( 𝑌 𝐺 𝑍 ) ) |
| 52 | 51 42 | fveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) = ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ) |
| 53 | 36 39 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) ) |
| 54 | 53 43 | fveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) |
| 55 | 50 52 54 | oveq123d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |
| 56 | 45 55 | eqeq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 57 | 35 56 | rspcdv | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 58 | 30 57 | rspcimdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 59 | 25 58 | rspcimdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 60 | 24 59 | rspcimdv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 61 | 60 | adantld | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 62 | 6 61 | rspcimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 63 | 23 62 | mpd | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |