This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any cofinal map implies the existence of a strictly monotone cofinal map with a domain no larger than the original. Proposition 11.7 of TakeutiZaring p. 101. (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofsmo.1 | ⊢ 𝐶 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) } | |
| cofsmo.2 | ⊢ 𝐾 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } | ||
| cofsmo.3 | ⊢ 𝑂 = OrdIso ( E , 𝐶 ) | ||
| Assertion | cofsmo | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofsmo.1 | ⊢ 𝐶 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) } | |
| 2 | cofsmo.2 | ⊢ 𝐾 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } | |
| 3 | cofsmo.3 | ⊢ 𝑂 = OrdIso ( E , 𝐶 ) | |
| 4 | 1 | ssrab3 | ⊢ 𝐶 ⊆ 𝐵 |
| 5 | ssexg | ⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ On ) → 𝐶 ∈ V ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐵 ∈ On → 𝐶 ∈ V ) |
| 7 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 8 | 4 7 | sstrid | ⊢ ( 𝐵 ∈ On → 𝐶 ⊆ On ) |
| 9 | epweon | ⊢ E We On | |
| 10 | wess | ⊢ ( 𝐶 ⊆ On → ( E We On → E We 𝐶 ) ) | |
| 11 | 8 9 10 | mpisyl | ⊢ ( 𝐵 ∈ On → E We 𝐶 ) |
| 12 | 3 | oiiso | ⊢ ( ( 𝐶 ∈ V ∧ E We 𝐶 ) → 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) |
| 13 | 6 11 12 | syl2anc | ⊢ ( 𝐵 ∈ On → 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) |
| 14 | 13 | ad2antlr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) |
| 15 | isof1o | ⊢ ( 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) → 𝑂 : dom 𝑂 –1-1-onto→ 𝐶 ) | |
| 16 | f1ofo | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ 𝐶 → 𝑂 : dom 𝑂 –onto→ 𝐶 ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 : dom 𝑂 –onto→ 𝐶 ) |
| 18 | fof | ⊢ ( 𝑂 : dom 𝑂 –onto→ 𝐶 → 𝑂 : dom 𝑂 ⟶ 𝐶 ) | |
| 19 | fss | ⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) | |
| 20 | 18 4 19 | sylancl | ⊢ ( 𝑂 : dom 𝑂 –onto→ 𝐶 → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 21 | 17 20 | syl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 22 | 3 | oion | ⊢ ( 𝐶 ∈ V → dom 𝑂 ∈ On ) |
| 23 | 6 22 | syl | ⊢ ( 𝐵 ∈ On → dom 𝑂 ∈ On ) |
| 24 | 23 | ad2antlr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → dom 𝑂 ∈ On ) |
| 25 | simplr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝐵 ∈ On ) | |
| 26 | eloni | ⊢ ( dom 𝑂 ∈ On → Ord dom 𝑂 ) | |
| 27 | smoiso2 | ⊢ ( ( Ord dom 𝑂 ∧ 𝐶 ⊆ On ) → ( ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ Smo 𝑂 ) ↔ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) ) | |
| 28 | 26 8 27 | syl2an | ⊢ ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ Smo 𝑂 ) ↔ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) ) |
| 29 | 28 | biimpar | ⊢ ( ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) → ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ Smo 𝑂 ) ) |
| 30 | 29 | simprd | ⊢ ( ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑂 Isom E , E ( dom 𝑂 , 𝐶 ) ) → Smo 𝑂 ) |
| 31 | 24 25 14 30 | syl21anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Smo 𝑂 ) |
| 32 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 33 | 32 | ad2antlr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Ord 𝐵 ) |
| 34 | smocdmdom | ⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ Smo 𝑂 ∧ Ord 𝐵 ) → dom 𝑂 ⊆ 𝐵 ) | |
| 35 | 21 31 33 34 | syl3anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → dom 𝑂 ⊆ 𝐵 ) |
| 36 | onsssuc | ⊢ ( ( dom 𝑂 ∈ On ∧ 𝐵 ∈ On ) → ( dom 𝑂 ⊆ 𝐵 ↔ dom 𝑂 ∈ suc 𝐵 ) ) | |
| 37 | 24 25 36 | syl2anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( dom 𝑂 ⊆ 𝐵 ↔ dom 𝑂 ∈ suc 𝐵 ) ) |
| 38 | 35 37 | mpbid | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → dom 𝑂 ∈ suc 𝐵 ) |
| 39 | 38 | adantrr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → dom 𝑂 ∈ suc 𝐵 ) |
| 40 | vex | ⊢ 𝑓 ∈ V | |
| 41 | 3 | oiexg | ⊢ ( 𝐶 ∈ V → 𝑂 ∈ V ) |
| 42 | 6 41 | syl | ⊢ ( 𝐵 ∈ On → 𝑂 ∈ V ) |
| 43 | 42 | ad2antlr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑂 ∈ V ) |
| 44 | coexg | ⊢ ( ( 𝑓 ∈ V ∧ 𝑂 ∈ V ) → ( 𝑓 ∘ 𝑂 ) ∈ V ) | |
| 45 | 40 43 44 | sylancr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( 𝑓 ∘ 𝑂 ) ∈ V ) |
| 46 | simprl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 47 | 21 | adantrr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 48 | 46 47 | fcod | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ) |
| 49 | simpr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 50 | 49 21 | fcod | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ) |
| 51 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 52 | 51 | ad2antrr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝐴 ⊆ On ) |
| 53 | 24 26 | syl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Ord dom 𝑂 ) |
| 54 | 17 18 | syl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 : dom 𝑂 ⟶ 𝐶 ) |
| 55 | simpl | ⊢ ( ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) → 𝑠 ∈ dom 𝑂 ) | |
| 56 | ffvelcdm | ⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐶 ∧ 𝑠 ∈ dom 𝑂 ) → ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 ) | |
| 57 | 54 55 56 | syl2an | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 ) |
| 58 | ffn | ⊢ ( 𝑂 : dom 𝑂 ⟶ 𝐶 → 𝑂 Fn dom 𝑂 ) | |
| 59 | 17 18 58 | 3syl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝑂 Fn dom 𝑂 ) |
| 60 | 59 31 | jca | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( 𝑂 Fn dom 𝑂 ∧ Smo 𝑂 ) ) |
| 61 | smoel2 | ⊢ ( ( ( 𝑂 Fn dom 𝑂 ∧ Smo 𝑂 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) ) | |
| 62 | 60 61 | sylan | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) ) |
| 63 | fveq2 | ⊢ ( 𝑧 = ( 𝑂 ‘ 𝑠 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) | |
| 64 | 63 | eleq2d | ⊢ ( 𝑧 = ( 𝑂 ‘ 𝑠 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 65 | 64 | raleqbi1dv | ⊢ ( 𝑧 = ( 𝑂 ‘ 𝑠 ) → ( ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 66 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 67 | 66 | eleq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 68 | 67 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 69 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 70 | 69 | eleq2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 71 | 70 | raleqbi1dv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 72 | 68 71 | bitrid | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 73 | 72 | cbvrabv | ⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) } = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) } |
| 74 | 1 73 | eqtri | ⊢ 𝐶 = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑧 ) } |
| 75 | 65 74 | elrab2 | ⊢ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 ↔ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 76 | 75 | simprbi | ⊢ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 → ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 77 | fveq2 | ⊢ ( 𝑥 = ( 𝑂 ‘ 𝑡 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ) | |
| 78 | 77 | eleq1d | ⊢ ( 𝑥 = ( 𝑂 ‘ 𝑡 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ↔ ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 79 | 78 | rspccv | ⊢ ( ∀ 𝑥 ∈ ( 𝑂 ‘ 𝑠 ) ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) → ( ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) → ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 80 | 76 79 | syl | ⊢ ( ( 𝑂 ‘ 𝑠 ) ∈ 𝐶 → ( ( 𝑂 ‘ 𝑡 ) ∈ ( 𝑂 ‘ 𝑠 ) → ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) ) |
| 81 | 57 62 80 | sylc | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ∈ ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 82 | ordtr1 | ⊢ ( Ord dom 𝑂 → ( ( 𝑡 ∈ 𝑠 ∧ 𝑠 ∈ dom 𝑂 ) → 𝑡 ∈ dom 𝑂 ) ) | |
| 83 | 82 | ancomsd | ⊢ ( Ord dom 𝑂 → ( ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) → 𝑡 ∈ dom 𝑂 ) ) |
| 84 | 24 26 83 | 3syl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) → 𝑡 ∈ dom 𝑂 ) ) |
| 85 | 84 | imp | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → 𝑡 ∈ dom 𝑂 ) |
| 86 | fvco3 | ⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ 𝑡 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ) | |
| 87 | 21 85 86 | syl2an2r | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑡 ) ) ) |
| 88 | simprl | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → 𝑠 ∈ dom 𝑂 ) | |
| 89 | fvco3 | ⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ 𝑠 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) | |
| 90 | 21 88 89 | syl2an2r | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑠 ) ) ) |
| 91 | 81 87 90 | 3eltr4d | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ( 𝑠 ∈ dom 𝑂 ∧ 𝑡 ∈ 𝑠 ) ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) |
| 92 | 91 | ralrimivva | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ∀ 𝑠 ∈ dom 𝑂 ∀ 𝑡 ∈ 𝑠 ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) |
| 93 | issmo2 | ⊢ ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 → ( ( 𝐴 ⊆ On ∧ Ord dom 𝑂 ∧ ∀ 𝑠 ∈ dom 𝑂 ∀ 𝑡 ∈ 𝑠 ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) → Smo ( 𝑓 ∘ 𝑂 ) ) ) | |
| 94 | 93 | imp | ⊢ ( ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ∧ ( 𝐴 ⊆ On ∧ Ord dom 𝑂 ∧ ∀ 𝑠 ∈ dom 𝑂 ∀ 𝑡 ∈ 𝑠 ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑡 ) ∈ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑠 ) ) ) → Smo ( 𝑓 ∘ 𝑂 ) ) |
| 95 | 50 52 53 92 94 | syl13anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → Smo ( 𝑓 ∘ 𝑂 ) ) |
| 96 | 95 | adantrr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → Smo ( 𝑓 ∘ 𝑂 ) ) |
| 97 | rabn0 | ⊢ ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ↔ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) | |
| 98 | ssrab2 | ⊢ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ 𝐵 | |
| 99 | 98 7 | sstrid | ⊢ ( 𝐵 ∈ On → { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ) |
| 100 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑤 ) ) | |
| 101 | 100 | sseq2d | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 102 | 101 | cbvrabv | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } = { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } |
| 103 | 102 | inteqi | ⊢ ∩ { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } = ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } |
| 104 | 2 103 | eqtri | ⊢ 𝐾 = ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } |
| 105 | onint | ⊢ ( ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ∧ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ) → ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) | |
| 106 | 104 105 | eqeltrid | ⊢ ( ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ∧ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ) → 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 107 | 99 106 | sylan | ⊢ ( ( 𝐵 ∈ On ∧ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ≠ ∅ ) → 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 108 | 97 107 | sylan2br | ⊢ ( ( 𝐵 ∈ On ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 109 | fveq2 | ⊢ ( 𝑤 = 𝐾 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝐾 ) ) | |
| 110 | 109 | sseq2d | ⊢ ( 𝑤 = 𝐾 → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) |
| 111 | 110 | elrab | ⊢ ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) |
| 112 | 108 111 | sylib | ⊢ ( ( 𝐵 ∈ On ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) |
| 113 | 112 | ex | ⊢ ( 𝐵 ∈ On → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) ) |
| 114 | 113 | adantl | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) ) |
| 115 | simpr2 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → 𝐾 ∈ 𝐵 ) | |
| 116 | simp3 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑤 ∈ 𝐾 ) | |
| 117 | 104 | eleq2i | ⊢ ( 𝑤 ∈ 𝐾 ↔ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 118 | simp21 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 119 | simp1l | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → Ord 𝐴 ) | |
| 120 | 119 51 | syl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐴 ⊆ On ) |
| 121 | 118 120 | fssd | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑓 : 𝐵 ⟶ On ) |
| 122 | simp22 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐾 ∈ 𝐵 ) | |
| 123 | 121 122 | ffvelcdmd | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑓 ‘ 𝐾 ) ∈ On ) |
| 124 | simp1r | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐵 ∈ On ) | |
| 125 | ontr1 | ⊢ ( 𝐵 ∈ On → ( ( 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) ) | |
| 126 | 125 | 3impib | ⊢ ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
| 127 | 124 116 122 126 | syl3anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑤 ∈ 𝐵 ) |
| 128 | 121 127 | ffvelcdmd | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑤 ) ∈ On ) |
| 129 | ontri1 | ⊢ ( ( ( 𝑓 ‘ 𝐾 ) ∈ On ∧ ( 𝑓 ‘ 𝑤 ) ∈ On ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ↔ ¬ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) | |
| 130 | 123 128 129 | syl2anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ↔ ¬ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 131 | simp23 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) | |
| 132 | simpl1 | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝐵 ∈ On ) | |
| 133 | 132 99 | syl | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ) |
| 134 | sstr | ⊢ ( ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) | |
| 135 | 126 134 | anim12i | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( 𝑤 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 136 | rabid | ⊢ ( 𝑤 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( 𝑤 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) | |
| 137 | 135 136 | sylibr | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑤 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 138 | onnmin | ⊢ ( ( { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ⊆ On ∧ 𝑤 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) | |
| 139 | 133 137 138 | syl2anc | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ∧ ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) |
| 140 | 139 | expr | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑤 ∈ 𝐾 ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 141 | 124 116 122 131 140 | syl31anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑓 ‘ 𝐾 ) ⊆ ( 𝑓 ‘ 𝑤 ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 142 | 130 141 | sylbird | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ¬ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) → ¬ 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 143 | 142 | con4d | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑤 ∈ ∩ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 144 | 117 143 | biimtrid | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑤 ∈ 𝐾 → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 145 | 116 144 | mpd | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) |
| 146 | 145 | 3expia | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → ( 𝑤 ∈ 𝐾 → ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 147 | 146 | ralrimiv | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → ∀ 𝑤 ∈ 𝐾 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) |
| 148 | fveq2 | ⊢ ( 𝑦 = 𝐾 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝐾 ) ) | |
| 149 | 148 | eleq2d | ⊢ ( 𝑦 = 𝐾 → ( ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 150 | 149 | raleqbi1dv | ⊢ ( 𝑦 = 𝐾 → ( ∀ 𝑤 ∈ 𝑦 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐾 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 151 | 150 1 | elrab2 | ⊢ ( 𝐾 ∈ 𝐶 ↔ ( 𝐾 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝐾 ( 𝑓 ‘ 𝑤 ) ∈ ( 𝑓 ‘ 𝐾 ) ) ) |
| 152 | 115 147 151 | sylanbrc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) ) → 𝐾 ∈ 𝐶 ) |
| 153 | 152 | expcom | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → 𝐾 ∈ 𝐶 ) ) |
| 154 | 153 | 3expib | ⊢ ( 𝑓 : 𝐵 ⟶ 𝐴 → ( ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → 𝐾 ∈ 𝐶 ) ) ) |
| 155 | 154 | com13 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ( 𝐾 ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ 𝐾 ) ) → ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝐾 ∈ 𝐶 ) ) ) |
| 156 | 114 155 | syld | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝐾 ∈ 𝐶 ) ) ) |
| 157 | 156 | com23 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝑓 : 𝐵 ⟶ 𝐴 → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → 𝐾 ∈ 𝐶 ) ) ) |
| 158 | 157 | imp31 | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝐾 ∈ 𝐶 ) |
| 159 | foelrn | ⊢ ( ( 𝑂 : dom 𝑂 –onto→ 𝐶 ∧ 𝐾 ∈ 𝐶 ) → ∃ 𝑣 ∈ dom 𝑂 𝐾 = ( 𝑂 ‘ 𝑣 ) ) | |
| 160 | 17 158 159 | syl2an2r | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑣 ∈ dom 𝑂 𝐾 = ( 𝑂 ‘ 𝑣 ) ) |
| 161 | eleq1 | ⊢ ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) | |
| 162 | 161 | biimpcd | ⊢ ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ) ) |
| 163 | fveq2 | ⊢ ( 𝑥 = ( 𝑂 ‘ 𝑣 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) | |
| 164 | 163 | sseq2d | ⊢ ( 𝑥 = ( 𝑂 ‘ 𝑣 ) → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 165 | 66 | sseq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
| 166 | 165 | cbvrabv | ⊢ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } = { 𝑥 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑥 ) } |
| 167 | 164 166 | elrab2 | ⊢ ( ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } ↔ ( ( 𝑂 ‘ 𝑣 ) ∈ 𝐵 ∧ 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 168 | 167 | simprbi | ⊢ ( ( 𝑂 ‘ 𝑣 ) ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) |
| 169 | 162 168 | syl6 | ⊢ ( 𝐾 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) } → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 170 | 108 169 | syl | ⊢ ( ( 𝐵 ∈ On ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 171 | 170 | ad5ant24 | ⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 172 | 21 | ad2antrr | ⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → 𝑂 : dom 𝑂 ⟶ 𝐵 ) |
| 173 | fvco3 | ⊢ ( ( 𝑂 : dom 𝑂 ⟶ 𝐵 ∧ 𝑣 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) | |
| 174 | 172 173 | sylancom | ⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) = ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) |
| 175 | 174 | sseq2d | ⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ↔ 𝑧 ⊆ ( 𝑓 ‘ ( 𝑂 ‘ 𝑣 ) ) ) ) |
| 176 | 171 175 | sylibrd | ⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ∧ 𝑣 ∈ dom 𝑂 ) → ( 𝐾 = ( 𝑂 ‘ 𝑣 ) → 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 177 | 176 | reximdva | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ∃ 𝑣 ∈ dom 𝑂 𝐾 = ( 𝑂 ‘ 𝑣 ) → ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 178 | 160 177 | mpd | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) ∧ ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) |
| 179 | 178 | ex | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 180 | 179 | ralimdv | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 181 | 180 | impr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) |
| 182 | 48 96 181 | 3jca | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ∧ Smo ( 𝑓 ∘ 𝑂 ) ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 183 | feq1 | ⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( 𝑔 : dom 𝑂 ⟶ 𝐴 ↔ ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ) ) | |
| 184 | smoeq | ⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( Smo 𝑔 ↔ Smo ( 𝑓 ∘ 𝑂 ) ) ) | |
| 185 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( 𝑔 ‘ 𝑣 ) = ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) | |
| 186 | 185 | sseq2d | ⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 187 | 186 | rexbidv | ⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 188 | 187 | ralbidv | ⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) |
| 189 | 183 184 188 | 3anbi123d | ⊢ ( 𝑔 = ( 𝑓 ∘ 𝑂 ) → ( ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ↔ ( ( 𝑓 ∘ 𝑂 ) : dom 𝑂 ⟶ 𝐴 ∧ Smo ( 𝑓 ∘ 𝑂 ) ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( ( 𝑓 ∘ 𝑂 ) ‘ 𝑣 ) ) ) ) |
| 190 | 45 182 189 | spcedv | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∃ 𝑔 ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 191 | feq2 | ⊢ ( 𝑥 = dom 𝑂 → ( 𝑔 : 𝑥 ⟶ 𝐴 ↔ 𝑔 : dom 𝑂 ⟶ 𝐴 ) ) | |
| 192 | rexeq | ⊢ ( 𝑥 = dom 𝑂 → ( ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) | |
| 193 | 192 | ralbidv | ⊢ ( 𝑥 = dom 𝑂 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 194 | 191 193 | 3anbi13d | ⊢ ( 𝑥 = dom 𝑂 → ( ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ↔ ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 195 | 194 | exbidv | ⊢ ( 𝑥 = dom 𝑂 → ( ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ↔ ∃ 𝑔 ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 196 | 195 | rspcev | ⊢ ( ( dom 𝑂 ∈ suc 𝐵 ∧ ∃ 𝑔 ( 𝑔 : dom 𝑂 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ dom 𝑂 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 197 | 39 190 196 | syl2anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) |
| 198 | 197 | ex | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |
| 199 | 198 | exlimdv | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ 𝑥 ∈ suc 𝐵 ∃ 𝑔 ( 𝑔 : 𝑥 ⟶ 𝐴 ∧ Smo 𝑔 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑣 ∈ 𝑥 𝑧 ⊆ ( 𝑔 ‘ 𝑣 ) ) ) ) |