This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smocdmdom | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 1 | ffnd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 3 | simpl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → Smo 𝐹 ) | |
| 4 | smodm2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → Ord 𝐴 ) |
| 6 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) | |
| 7 | 5 6 | sylancom | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) |
| 8 | simpl3 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → Ord 𝐵 ) | |
| 9 | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 10 | smogt | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 11 | 2 3 9 10 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ) |
| 12 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 13 | 12 | 3ad2antl1 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 14 | ordtr2 | ⊢ ( ( Ord 𝑥 ∧ Ord 𝐵 ) → ( ( 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) | |
| 15 | 14 | imp | ⊢ ( ( ( Ord 𝑥 ∧ Ord 𝐵 ) ∧ ( 𝑥 ⊆ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 16 | 7 8 11 13 15 | syl22anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 17 | 16 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 18 | 17 | ssrdv | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵 ) → 𝐴 ⊆ 𝐵 ) |