This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoiso2 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ↔ 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | smo11 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 4 | simpl | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 5 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) | |
| 6 | 3 4 5 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 7 | 6 | adantl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 8 | fofn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 9 | smoord | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 11 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 12 | 11 | epeli | ⊢ ( ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 13 | 9 10 12 | 3bitr4g | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 13 | ralrimivva | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 | 8 14 | sylan | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 | df-isom | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 18 | 7 16 17 | sylanbrc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) |
| 19 | 18 | ex | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
| 20 | isof1o | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 21 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 24 | smoiso | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → Smo 𝐹 ) | |
| 25 | 23 24 | jca | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) |
| 26 | 25 | 3expib | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) ) |
| 27 | 26 | com12 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) ) |
| 28 | 19 27 | impbid | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ↔ 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) ) |