This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoel2 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm | ⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴 ) ) |
| 3 | 2 | anbi1d | ⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) ) |
| 4 | 3 | biimprd | ⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) ) ) |
| 5 | smoel | ⊢ ( ( Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) | |
| 6 | 5 | 3expib | ⊢ ( Smo 𝐹 → ( ( 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) ) |
| 7 | 4 6 | sylan9 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) ) |
| 8 | 7 | imp | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) |