This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clsocv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clsocv.o | ⊢ 𝑂 = ( ocv ‘ 𝑊 ) | ||
| clsocv.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| Assertion | clsocv | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑂 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsocv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clsocv.o | ⊢ 𝑂 = ( ocv ‘ 𝑊 ) | |
| 3 | clsocv.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 4 | cphngp | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) | |
| 5 | ngptps | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ TopSp ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ TopSp ) |
| 8 | 1 3 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝑉 ) ) |
| 9 | 7 8 | sylib | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝐽 ∈ ( TopOn ‘ 𝑉 ) ) |
| 10 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑉 ) → 𝐽 ∈ Top ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝐽 ∈ Top ) |
| 12 | simpr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) | |
| 13 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑉 ) → 𝑉 = ∪ 𝐽 ) | |
| 14 | 9 13 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑉 = ∪ 𝐽 ) |
| 15 | 12 14 | sseqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 18 | 11 15 17 | syl2anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 19 | 2 | ocv2ss | ⊢ ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( 𝑂 ‘ 𝑆 ) ) |
| 20 | 18 19 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( 𝑂 ‘ 𝑆 ) ) |
| 21 | 16 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 22 | 11 15 21 | syl2anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 23 | 22 14 | sseqtrrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ) |
| 25 | 1 2 | ocvss | ⊢ ( 𝑂 ‘ 𝑆 ) ⊆ 𝑉 |
| 26 | 25 | a1i | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑂 ‘ 𝑆 ) ⊆ 𝑉 ) |
| 27 | 26 | sselda | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑥 ∈ 𝑉 ) |
| 28 | dfss2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 29 | 24 28 | sylib | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 30 | 29 | ineq1d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 31 | dfrab3 | ⊢ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } = ( 𝑉 ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | |
| 32 | 31 | ineq2i | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( 𝑉 ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 33 | inass | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( 𝑉 ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) | |
| 34 | 32 33 | eqtr4i | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 35 | dfrab3 | ⊢ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | |
| 36 | 30 34 35 | 3eqtr4g | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 37 | 16 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 38 | 11 15 37 | syl2anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 40 | fvex | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V | |
| 41 | eqid | ⊢ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | |
| 42 | 41 | mptiniseg | ⊢ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V → ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 43 | 40 42 | ax-mp | ⊢ ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 44 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 45 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 46 | simpll | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑊 ∈ ℂPreHil ) | |
| 47 | 9 | adantr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑉 ) ) |
| 48 | 47 47 27 | cnmptc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 𝑦 ∈ 𝑉 ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 49 | 47 | cnmptid | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 𝑦 ∈ 𝑉 ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 50 | 3 44 45 46 47 48 49 | cnmpt1ip | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 51 | 44 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 52 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 53 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 54 | 53 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 55 | 52 54 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 57 | 0cn | ⊢ 0 ∈ ℂ | |
| 58 | 56 57 | eqeltrrdi | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) |
| 59 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 60 | 59 | sncld | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 61 | 51 58 60 | sylancr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 62 | cnclima | ⊢ ( ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ∧ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) → ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 63 | 50 61 62 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 64 | 43 63 | eqeltrrid | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 65 | incld | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ∧ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 66 | 39 64 65 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 67 | 36 66 | eqeltrrd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 68 | 18 | adantr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 69 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 70 | 1 45 53 69 2 | ocvi | ⊢ ( ( 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 71 | 70 | ralrimiva | ⊢ ( 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 72 | 71 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 73 | ssrab | ⊢ ( 𝑆 ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 74 | 68 72 73 | sylanbrc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑆 ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 75 | 16 | clsss2 | ⊢ ( ( { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 76 | 67 74 75 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 77 | ssrab2 | ⊢ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) | |
| 78 | 77 | a1i | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 79 | 76 78 | eqssd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 80 | rabid2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 81 | 79 80 | sylib | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 82 | 1 45 53 69 2 | elocv | ⊢ ( 𝑥 ∈ ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 83 | 24 27 81 82 | syl3anbrc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 84 | 20 83 | eqelssd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑂 ‘ 𝑆 ) ) |