This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocvi | ⊢ ( ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 , 𝐵 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 5 | ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 6 | 1 2 3 4 5 | elocv | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |
| 7 | 6 | simp3bi | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 , 𝑥 ) = ( 𝐴 , 𝐵 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 , 𝑥 ) = 0 ↔ ( 𝐴 , 𝐵 ) = 0 ) ) |
| 10 | 9 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 , 𝐵 ) = 0 ) |
| 11 | 7 10 | sylan | ⊢ ( ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 , 𝐵 ) = 0 ) |