This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | elocv | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 5 | ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 6 | elfvdm | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑆 ∈ dom ⊥ ) | |
| 7 | n0i | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → ¬ ( ⊥ ‘ 𝑆 ) = ∅ ) | |
| 8 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ∅ ) | |
| 9 | 5 8 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → ⊥ = ∅ ) |
| 10 | 9 | fveq1d | ⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
| 11 | 0fv | ⊢ ( ∅ ‘ 𝑆 ) = ∅ | |
| 12 | 10 11 | eqtrdi | ⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ∅ ) |
| 13 | 7 12 | nsyl2 | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑊 ∈ V ) |
| 14 | 1 2 3 4 5 | ocvfval | ⊢ ( 𝑊 ∈ V → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) ) |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) ) |
| 16 | 15 | dmeqd | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → dom ⊥ = dom ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) ) |
| 17 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 18 | 17 | rabex | ⊢ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ∈ V |
| 19 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) | |
| 20 | 18 19 | dmmpti | ⊢ dom ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) = 𝒫 𝑉 |
| 21 | 16 20 | eqtrdi | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → dom ⊥ = 𝒫 𝑉 ) |
| 22 | 6 21 | eleqtrd | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑆 ∈ 𝒫 𝑉 ) |
| 23 | 22 | elpwid | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑆 ⊆ 𝑉 ) |
| 24 | 1 2 3 4 5 | ocvval | ⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) = { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 } ) |
| 25 | 24 | eleq2d | ⊢ ( 𝑆 ⊆ 𝑉 → ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ 𝐴 ∈ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 } ) ) |
| 26 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 , 𝑥 ) = ( 𝐴 , 𝑥 ) ) | |
| 27 | 26 | eqeq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 , 𝑥 ) = 0 ↔ ( 𝐴 , 𝑥 ) = 0 ) ) |
| 28 | 27 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |
| 29 | 28 | elrab | ⊢ ( 𝐴 ∈ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 } ↔ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |
| 30 | 25 29 | bitrdi | ⊢ ( 𝑆 ⊆ 𝑉 → ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) ) |
| 31 | 23 30 | biadanii | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) ) |
| 32 | 3anass | ⊢ ( ( 𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) ) | |
| 33 | 31 32 | bitr4i | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |