This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for intersection of classes. Exercise 9 of TakeutiZaring p. 17. (Contributed by NM, 3-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∩ ( 𝐵 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) | |
| 2 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 4 | 1 3 | bitr4i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 5 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ) |
| 7 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) | |
| 8 | 4 6 7 | 3bitr4i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∩ 𝐶 ) ) ) |
| 9 | 8 | ineqri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐶 ) = ( 𝐴 ∩ ( 𝐵 ∩ 𝐶 ) ) |