This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | incld | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) | |
| 2 | prnzg | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → { 𝐴 , 𝐵 } ≠ ∅ ) | |
| 3 | prssi | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → { 𝐴 , 𝐵 } ⊆ ( Clsd ‘ 𝐽 ) ) | |
| 4 | intcld | ⊢ ( ( { 𝐴 , 𝐵 } ≠ ∅ ∧ { 𝐴 , 𝐵 } ⊆ ( Clsd ‘ 𝐽 ) ) → ∩ { 𝐴 , 𝐵 } ∈ ( Clsd ‘ 𝐽 ) ) | |
| 5 | 2 3 4 | syl2an2r | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ { 𝐴 , 𝐵 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 6 | 1 5 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |