This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space is a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphlmod | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) | |
| 2 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 4 | 2 3 | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 5 | 2 3 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) |
| 6 | 2 3 | isclm | ⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 7 | 1 4 5 6 | syl3anbrc | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |