This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ocv2ss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| Assertion | ocv2ss | ⊢ ( 𝑇 ⊆ 𝑆 → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocv2ss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 2 | sstr2 | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑊 ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) ) | |
| 3 | idd | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) ) | |
| 4 | ssralv | ⊢ ( 𝑇 ⊆ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 5 | 2 3 4 | 3anim123d | ⊢ ( 𝑇 ⊆ 𝑆 → ( ( 𝑆 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑇 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 10 | 6 7 8 9 1 | elocv | ⊢ ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 11 | 6 7 8 9 1 | elocv | ⊢ ( 𝑥 ∈ ( ⊥ ‘ 𝑇 ) ↔ ( 𝑇 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 12 | 5 10 11 | 3imtr4g | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) → 𝑥 ∈ ( ⊥ ‘ 𝑇 ) ) ) |
| 13 | 12 | ssrdv | ⊢ ( 𝑇 ⊆ 𝑆 → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ 𝑇 ) ) |