This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008) (Revised by AV, 25-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsscph.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| cphsscph.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | cphsscph | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsscph.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | cphsscph.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 4 | 1 2 | phlssphl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |
| 6 | cphnlm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) | |
| 7 | 1 2 | lssnlm | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 11 | 9 10 | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 13 | 1 9 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) |
| 18 | 12 17 | mpbid | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 19 | 5 8 18 | 3jca | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ) |
| 20 | simpl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ ℂPreHil ) | |
| 21 | elinel1 | ⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 | elinel2 | ⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ( 0 [,) +∞ ) ) | |
| 24 | elrege0 | ⊢ ( 𝑞 ∈ ( 0 [,) +∞ ) ↔ ( 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) ) | |
| 25 | 24 | simplbi | ⊢ ( 𝑞 ∈ ( 0 [,) +∞ ) → 𝑞 ∈ ℝ ) |
| 26 | 23 25 | syl | ⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ℝ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 𝑞 ∈ ℝ ) |
| 28 | 24 | simprbi | ⊢ ( 𝑞 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝑞 ) |
| 29 | 23 28 | syl | ⊢ ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 0 ≤ 𝑞 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 0 ≤ 𝑞 ) |
| 31 | 22 27 30 | 3jca | ⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) ) |
| 32 | 9 10 | cphsqrtcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) ) → ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 | 20 31 32 | syl2anr | ⊢ ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) ) → ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 34 | eleq1 | ⊢ ( ( √ ‘ 𝑞 ) = 𝑥 → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) ) → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 37 | 33 36 | mpbid | ⊢ ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 38 | 37 | ex | ⊢ ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 39 | 38 | rexlimiva | ⊢ ( ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 → ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 40 | df-sqrt | ⊢ √ = ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑐 ∈ ℂ ( ( 𝑐 ↑ 2 ) = 𝑥 ∧ 0 ≤ ( ℜ ‘ 𝑐 ) ∧ ( i · 𝑐 ) ∉ ℝ+ ) ) ) | |
| 41 | 40 | funmpt2 | ⊢ Fun √ |
| 42 | fvelima | ⊢ ( ( Fun √ ∧ 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ) → ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 ) | |
| 43 | 41 42 | mpan | ⊢ ( 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) → ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 ) |
| 44 | 39 43 | syl11 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 45 | 44 | ssrdv | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 46 | 14 | ineq1d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) = ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) |
| 47 | 46 | imaeq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) = ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ) |
| 48 | 47 14 | sseq12d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 49 | 48 | adantl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 50 | 45 49 | mpbid | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 51 | cphlmod | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) | |
| 52 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 53 | 51 52 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 54 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 55 | eqid | ⊢ ( norm ‘ 𝑋 ) = ( norm ‘ 𝑋 ) | |
| 56 | 1 54 55 | subgnm | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( norm ‘ 𝑋 ) = ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) ) |
| 57 | 53 56 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑋 ) = ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) ) |
| 58 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 59 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 60 | 58 59 54 | cphnmfval | ⊢ ( 𝑊 ∈ ℂPreHil → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) ) |
| 61 | 60 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) ) |
| 62 | 1 59 | ressip | ⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑋 ) ) |
| 63 | 62 | adantl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑋 ) ) |
| 64 | 63 | oveqd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) = ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) |
| 65 | 64 | fveq2d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) = ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) |
| 66 | 65 | mpteq2dv | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑊 ) 𝑏 ) ) ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 67 | 61 66 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 68 | 58 2 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 70 | dfss | ⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ↔ 𝑈 = ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 71 | 69 70 | sylib | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) |
| 72 | 67 71 | reseq12d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 73 | 1 58 | ressbas | ⊢ ( 𝑈 ∈ 𝑆 → ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑋 ) ) |
| 74 | 73 | adantl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑋 ) ) |
| 75 | 74 | reseq2d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) ) |
| 76 | 72 75 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) ) |
| 77 | 1 58 | ressbasss | ⊢ ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) |
| 78 | 77 | a1i | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 79 | 78 | resmptd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 80 | 57 76 79 | 3eqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → ( norm ‘ 𝑋 ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) |
| 81 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 82 | eqid | ⊢ ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) | |
| 83 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 84 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) | |
| 85 | 81 82 55 83 84 | iscph | ⊢ ( 𝑋 ∈ ℂPreHil ↔ ( ( 𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ∧ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( norm ‘ 𝑋 ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖 ‘ 𝑋 ) 𝑏 ) ) ) ) ) |
| 86 | 19 50 80 85 | syl3anbrc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |