This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ngptps

Description: A normed group is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion ngptps ( 𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 ngpms ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp )
2 mstps ( 𝐺 ∈ MetSp → 𝐺 ∈ TopSp )
3 1 2 syl ( 𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp )