This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | clsss2 | ⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cldrcl | ⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝐽 ∈ Top ) |
| 4 | 1 | cldss | ⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐶 ⊆ 𝑋 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝐶 ⊆ 𝑋 ) |
| 6 | simpr | ⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝑆 ⊆ 𝐶 ) | |
| 7 | 1 | clsss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ) |
| 8 | 3 5 6 7 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ) |
| 9 | cldcls | ⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) = 𝐶 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) = 𝐶 ) |
| 11 | 8 10 | sseqtrd | ⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝐶 ) |