This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of Gleason p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqeqor | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 ↑ 2 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) ) |
| 3 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 = 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ) ) | |
| 4 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 = - 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) | |
| 5 | 3 4 | orbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ) |
| 6 | 2 5 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ) ) |
| 7 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) | |
| 8 | 7 | eqeq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) ) |
| 9 | eqeq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) | |
| 10 | negeq | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → - 𝐵 = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
| 12 | 9 11 | orbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) |
| 13 | 8 12 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) ) |
| 14 | 0cn | ⊢ 0 ∈ ℂ | |
| 15 | 14 | elimel | ⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
| 16 | 14 | elimel | ⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
| 17 | 15 16 | sqeqori | ⊢ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
| 18 | 6 13 17 | dedth2h | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ) |